*** 1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Weak DP Rules: Weak TRS Rules: Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {if_mod,le,minus,mod} TcT has computed the following interpretation: p(0) = [0] p(false) = [0] p(if_mod) = [2] x1 + [2] x2 + [1] p(le) = [0] p(minus) = [1] x1 + [0] p(mod) = [2] x1 + [1] p(s) = [1] x1 + [8] p(true) = [0] Following rules are strictly oriented: if_mod(false(),s(x),s(y)) = [2] x + [17] > [1] x + [8] = s(x) if_mod(true(),s(x),s(y)) = [2] x + [17] > [2] x + [1] = mod(minus(x,y),s(y)) minus(s(x),s(y)) = [1] x + [8] > [1] x + [0] = minus(x,y) mod(0(),y) = [1] > [0] = 0() mod(s(x),0()) = [2] x + [17] > [0] = 0() Following rules are (at-least) weakly oriented: le(0(),y) = [0] >= [0] = true() le(s(x),0()) = [0] >= [0] = false() le(s(x),s(y)) = [0] >= [0] = le(x,y) minus(x,0()) = [1] x + [0] >= [1] x + [0] = x mod(s(x),s(y)) = [2] x + [17] >= [2] x + [17] = if_mod(le(y,x),s(x),s(y)) *** 1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {if_mod,le,minus,mod} TcT has computed the following interpretation: p(0) = [2] p(false) = [1] p(if_mod) = [8] x1 + [4] x2 + [1] x3 + [1] p(le) = [1] p(minus) = [1] x1 + [1] p(mod) = [4] x1 + [1] x2 + [13] p(s) = [1] x1 + [2] p(true) = [1] Following rules are strictly oriented: minus(x,0()) = [1] x + [1] > [1] x + [0] = x mod(s(x),s(y)) = [4] x + [1] y + [23] > [4] x + [1] y + [19] = if_mod(le(y,x),s(x),s(y)) Following rules are (at-least) weakly oriented: if_mod(false(),s(x),s(y)) = [4] x + [1] y + [19] >= [1] x + [2] = s(x) if_mod(true(),s(x),s(y)) = [4] x + [1] y + [19] >= [4] x + [1] y + [19] = mod(minus(x,y),s(y)) le(0(),y) = [1] >= [1] = true() le(s(x),0()) = [1] >= [1] = false() le(s(x),s(y)) = [1] >= [1] = le(x,y) minus(s(x),s(y)) = [1] x + [3] >= [1] x + [1] = minus(x,y) mod(0(),y) = [1] y + [21] >= [2] = 0() mod(s(x),0()) = [4] x + [23] >= [2] = 0() *** 1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [2] p(false) = [0] p(if_mod) = [1] x1 + [1] x2 + [0] p(le) = [2] p(minus) = [1] x1 + [4] p(mod) = [1] x1 + [2] p(s) = [1] x1 + [0] p(true) = [6] Following rules are strictly oriented: le(s(x),0()) = [2] > [0] = false() Following rules are (at-least) weakly oriented: if_mod(false(),s(x),s(y)) = [1] x + [0] >= [1] x + [0] = s(x) if_mod(true(),s(x),s(y)) = [1] x + [6] >= [1] x + [6] = mod(minus(x,y),s(y)) le(0(),y) = [2] >= [6] = true() le(s(x),s(y)) = [2] >= [2] = le(x,y) minus(x,0()) = [1] x + [4] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [4] >= [1] x + [4] = minus(x,y) mod(0(),y) = [4] >= [2] = 0() mod(s(x),0()) = [1] x + [2] >= [2] = 0() mod(s(x),s(y)) = [1] x + [2] >= [1] x + [2] = if_mod(le(y,x),s(x),s(y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: le(0(),y) -> true() le(s(x),s(y)) -> le(x,y) Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(s(x),0()) -> false() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(0) = [0] p(false) = [1] p(if_mod) = [1] x1 + [1] x2 + [4] p(le) = [1] p(minus) = [1] x1 + [0] p(mod) = [1] x1 + [5] p(s) = [1] x1 + [1] p(true) = [0] Following rules are strictly oriented: le(0(),y) = [1] > [0] = true() Following rules are (at-least) weakly oriented: if_mod(false(),s(x),s(y)) = [1] x + [6] >= [1] x + [1] = s(x) if_mod(true(),s(x),s(y)) = [1] x + [5] >= [1] x + [5] = mod(minus(x,y),s(y)) le(s(x),0()) = [1] >= [1] = false() le(s(x),s(y)) = [1] >= [1] = le(x,y) minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [1] >= [1] x + [0] = minus(x,y) mod(0(),y) = [5] >= [0] = 0() mod(s(x),0()) = [1] x + [6] >= [0] = 0() mod(s(x),s(y)) = [1] x + [6] >= [1] x + [6] = if_mod(le(y,x),s(x),s(y)) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: le(s(x),s(y)) -> le(x,y) Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(if_mod) = {1}, uargs(mod) = {1} Following symbols are considered usable: {if_mod,le,minus,mod} TcT has computed the following interpretation: p(0) = [0] [1] p(false) = [2] [1] p(if_mod) = [1 4] x1 + [1 0] x2 + [3 3] x3 + [3] [0 2] [0 4] [0 0] [2] p(le) = [0 1] x2 + [2] [0 0] [1] p(minus) = [1 0] x1 + [0] [0 1] [0] p(mod) = [1 1] x1 + [3 3] x2 + [7] [0 4] [0 0] [5] p(s) = [1 3] x1 + [0] [0 1] [2] p(true) = [0] [1] Following rules are strictly oriented: le(s(x),s(y)) = [0 1] y + [4] [0 0] [1] > [0 1] y + [2] [0 0] [1] = le(x,y) Following rules are (at-least) weakly oriented: if_mod(false(),s(x),s(y)) = [1 3] x + [3 12] y + [15] [0 4] [0 0] [12] >= [1 3] x + [0] [0 1] [2] = s(x) if_mod(true(),s(x),s(y)) = [1 3] x + [3 12] y + [13] [0 4] [0 0] [12] >= [1 1] x + [3 12] y + [13] [0 4] [0 0] [5] = mod(minus(x,y),s(y)) le(0(),y) = [0 1] y + [2] [0 0] [1] >= [0] [1] = true() le(s(x),0()) = [3] [1] >= [2] [1] = false() minus(x,0()) = [1 0] x + [0] [0 1] [0] >= [1 0] x + [0] [0 1] [0] = x minus(s(x),s(y)) = [1 3] x + [0] [0 1] [2] >= [1 0] x + [0] [0 1] [0] = minus(x,y) mod(0(),y) = [3 3] y + [8] [0 0] [9] >= [0] [1] = 0() mod(s(x),0()) = [1 4] x + [12] [0 4] [13] >= [0] [1] = 0() mod(s(x),s(y)) = [1 4] x + [3 12] y + [15] [0 4] [0 0] [13] >= [1 4] x + [3 12] y + [15] [0 4] [0 0] [12] = if_mod(le(y,x),s(x),s(y)) *** 1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: if_mod(false(),s(x),s(y)) -> s(x) if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y)) le(0(),y) -> true() le(s(x),0()) -> false() le(s(x),s(y)) -> le(x,y) minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) mod(0(),y) -> 0() mod(s(x),0()) -> 0() mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y)) Signature: {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0} Obligation: Innermost basic terms: {if_mod,le,minus,mod}/{0,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).