*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_mod,le,minus,mod}/{0,false,s,true}
    Applied Processor:
      NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(if_mod) = {1},
        uargs(mod) = {1}
      
      Following symbols are considered usable:
        {if_mod,le,minus,mod}
      TcT has computed the following interpretation:
             p(0) = [0]                  
         p(false) = [0]                  
        p(if_mod) = [2] x1 + [2] x2 + [1]
            p(le) = [0]                  
         p(minus) = [1] x1 + [0]         
           p(mod) = [2] x1 + [1]         
             p(s) = [1] x1 + [8]         
          p(true) = [0]                  
      
      Following rules are strictly oriented:
      if_mod(false(),s(x),s(y)) = [2] x + [17]        
                                > [1] x + [8]         
                                = s(x)                
      
       if_mod(true(),s(x),s(y)) = [2] x + [17]        
                                > [2] x + [1]         
                                = mod(minus(x,y),s(y))
      
               minus(s(x),s(y)) = [1] x + [8]         
                                > [1] x + [0]         
                                = minus(x,y)          
      
                     mod(0(),y) = [1]                 
                                > [0]                 
                                = 0()                 
      
                  mod(s(x),0()) = [2] x + [17]        
                                > [0]                 
                                = 0()                 
      
      
      Following rules are (at-least) weakly oriented:
           le(0(),y) =  [0]                      
                     >= [0]                      
                     =  true()                   
      
        le(s(x),0()) =  [0]                      
                     >= [0]                      
                     =  false()                  
      
       le(s(x),s(y)) =  [0]                      
                     >= [0]                      
                     =  le(x,y)                  
      
        minus(x,0()) =  [1] x + [0]              
                     >= [1] x + [0]              
                     =  x                        
      
      mod(s(x),s(y)) =  [2] x + [17]             
                     >= [2] x + [17]             
                     =  if_mod(le(y,x),s(x),s(y))
      
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
      Weak DP Rules:
        
      Weak TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        minus(s(x),s(y)) -> minus(x,y)
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
      Signature:
        {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_mod,le,minus,mod}/{0,false,s,true}
    Applied Processor:
      NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(if_mod) = {1},
        uargs(mod) = {1}
      
      Following symbols are considered usable:
        {if_mod,le,minus,mod}
      TcT has computed the following interpretation:
             p(0) = [2]                           
         p(false) = [1]                           
        p(if_mod) = [8] x1 + [4] x2 + [1] x3 + [1]
            p(le) = [1]                           
         p(minus) = [1] x1 + [1]                  
           p(mod) = [4] x1 + [1] x2 + [13]        
             p(s) = [1] x1 + [2]                  
          p(true) = [1]                           
      
      Following rules are strictly oriented:
        minus(x,0()) = [1] x + [1]              
                     > [1] x + [0]              
                     = x                        
      
      mod(s(x),s(y)) = [4] x + [1] y + [23]     
                     > [4] x + [1] y + [19]     
                     = if_mod(le(y,x),s(x),s(y))
      
      
      Following rules are (at-least) weakly oriented:
      if_mod(false(),s(x),s(y)) =  [4] x + [1] y + [19]
                                >= [1] x + [2]         
                                =  s(x)                
      
       if_mod(true(),s(x),s(y)) =  [4] x + [1] y + [19]
                                >= [4] x + [1] y + [19]
                                =  mod(minus(x,y),s(y))
      
                      le(0(),y) =  [1]                 
                                >= [1]                 
                                =  true()              
      
                   le(s(x),0()) =  [1]                 
                                >= [1]                 
                                =  false()             
      
                  le(s(x),s(y)) =  [1]                 
                                >= [1]                 
                                =  le(x,y)             
      
               minus(s(x),s(y)) =  [1] x + [3]         
                                >= [1] x + [1]         
                                =  minus(x,y)          
      
                     mod(0(),y) =  [1] y + [21]        
                                >= [2]                 
                                =  0()                 
      
                  mod(s(x),0()) =  [4] x + [23]        
                                >= [2]                 
                                =  0()                 
      
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
      Weak DP Rules:
        
      Weak TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
      Signature:
        {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_mod,le,minus,mod}/{0,false,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(if_mod) = {1},
          uargs(mod) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(0) = [2]                  
           p(false) = [0]                  
          p(if_mod) = [1] x1 + [1] x2 + [0]
              p(le) = [2]                  
           p(minus) = [1] x1 + [4]         
             p(mod) = [1] x1 + [2]         
               p(s) = [1] x1 + [0]         
            p(true) = [6]                  
        
        Following rules are strictly oriented:
        le(s(x),0()) = [2]    
                     > [0]    
                     = false()
        
        
        Following rules are (at-least) weakly oriented:
        if_mod(false(),s(x),s(y)) =  [1] x + [0]              
                                  >= [1] x + [0]              
                                  =  s(x)                     
        
         if_mod(true(),s(x),s(y)) =  [1] x + [6]              
                                  >= [1] x + [6]              
                                  =  mod(minus(x,y),s(y))     
        
                        le(0(),y) =  [2]                      
                                  >= [6]                      
                                  =  true()                   
        
                    le(s(x),s(y)) =  [2]                      
                                  >= [2]                      
                                  =  le(x,y)                  
        
                     minus(x,0()) =  [1] x + [4]              
                                  >= [1] x + [0]              
                                  =  x                        
        
                 minus(s(x),s(y)) =  [1] x + [4]              
                                  >= [1] x + [4]              
                                  =  minus(x,y)               
        
                       mod(0(),y) =  [4]                      
                                  >= [2]                      
                                  =  0()                      
        
                    mod(s(x),0()) =  [1] x + [2]              
                                  >= [2]                      
                                  =  0()                      
        
                   mod(s(x),s(y)) =  [1] x + [2]              
                                  >= [1] x + [2]              
                                  =  if_mod(le(y,x),s(x),s(y))
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        le(0(),y) -> true()
        le(s(x),s(y)) -> le(x,y)
      Weak DP Rules:
        
      Weak TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        le(s(x),0()) -> false()
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
      Signature:
        {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_mod,le,minus,mod}/{0,false,s,true}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(if_mod) = {1},
          uargs(mod) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(0) = [0]                  
           p(false) = [1]                  
          p(if_mod) = [1] x1 + [1] x2 + [4]
              p(le) = [1]                  
           p(minus) = [1] x1 + [0]         
             p(mod) = [1] x1 + [5]         
               p(s) = [1] x1 + [1]         
            p(true) = [0]                  
        
        Following rules are strictly oriented:
        le(0(),y) = [1]   
                  > [0]   
                  = true()
        
        
        Following rules are (at-least) weakly oriented:
        if_mod(false(),s(x),s(y)) =  [1] x + [6]              
                                  >= [1] x + [1]              
                                  =  s(x)                     
        
         if_mod(true(),s(x),s(y)) =  [1] x + [5]              
                                  >= [1] x + [5]              
                                  =  mod(minus(x,y),s(y))     
        
                     le(s(x),0()) =  [1]                      
                                  >= [1]                      
                                  =  false()                  
        
                    le(s(x),s(y)) =  [1]                      
                                  >= [1]                      
                                  =  le(x,y)                  
        
                     minus(x,0()) =  [1] x + [0]              
                                  >= [1] x + [0]              
                                  =  x                        
        
                 minus(s(x),s(y)) =  [1] x + [1]              
                                  >= [1] x + [0]              
                                  =  minus(x,y)               
        
                       mod(0(),y) =  [5]                      
                                  >= [0]                      
                                  =  0()                      
        
                    mod(s(x),0()) =  [1] x + [6]              
                                  >= [0]                      
                                  =  0()                      
        
                   mod(s(x),s(y)) =  [1] x + [6]              
                                  >= [1] x + [6]              
                                  =  if_mod(le(y,x),s(x),s(y))
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        le(s(x),s(y)) -> le(x,y)
      Weak DP Rules:
        
      Weak TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
      Signature:
        {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_mod,le,minus,mod}/{0,false,s,true}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(if_mod) = {1},
        uargs(mod) = {1}
      
      Following symbols are considered usable:
        {if_mod,le,minus,mod}
      TcT has computed the following interpretation:
             p(0) = [0]                      
                    [1]                      
         p(false) = [2]                      
                    [1]                      
        p(if_mod) = [1 4] x1 + [1 0] x2 + [3 
                    3] x3 + [3]              
                    [0 2]      [0 4]      [0 
                    0]      [2]              
            p(le) = [0 1] x2 + [2]           
                    [0 0]      [1]           
         p(minus) = [1 0] x1 + [0]           
                    [0 1]      [0]           
           p(mod) = [1 1] x1 + [3 3] x2 + [7]
                    [0 4]      [0 0]      [5]
             p(s) = [1 3] x1 + [0]           
                    [0 1]      [2]           
          p(true) = [0]                      
                    [1]                      
      
      Following rules are strictly oriented:
      le(s(x),s(y)) = [0 1] y + [4]
                      [0 0]     [1]
                    > [0 1] y + [2]
                      [0 0]     [1]
                    = le(x,y)      
      
      
      Following rules are (at-least) weakly oriented:
      if_mod(false(),s(x),s(y)) =  [1 3] x + [3 12] y + [15]
                                   [0 4]     [0  0]     [12]
                                >= [1 3] x + [0]            
                                   [0 1]     [2]            
                                =  s(x)                     
      
       if_mod(true(),s(x),s(y)) =  [1 3] x + [3 12] y + [13]
                                   [0 4]     [0  0]     [12]
                                >= [1 1] x + [3 12] y + [13]
                                   [0 4]     [0  0]     [5] 
                                =  mod(minus(x,y),s(y))     
      
                      le(0(),y) =  [0 1] y + [2]            
                                   [0 0]     [1]            
                                >= [0]                      
                                   [1]                      
                                =  true()                   
      
                   le(s(x),0()) =  [3]                      
                                   [1]                      
                                >= [2]                      
                                   [1]                      
                                =  false()                  
      
                   minus(x,0()) =  [1 0] x + [0]            
                                   [0 1]     [0]            
                                >= [1 0] x + [0]            
                                   [0 1]     [0]            
                                =  x                        
      
               minus(s(x),s(y)) =  [1 3] x + [0]            
                                   [0 1]     [2]            
                                >= [1 0] x + [0]            
                                   [0 1]     [0]            
                                =  minus(x,y)               
      
                     mod(0(),y) =  [3 3] y + [8]            
                                   [0 0]     [9]            
                                >= [0]                      
                                   [1]                      
                                =  0()                      
      
                  mod(s(x),0()) =  [1 4] x + [12]           
                                   [0 4]     [13]           
                                >= [0]                      
                                   [1]                      
                                =  0()                      
      
                 mod(s(x),s(y)) =  [1 4] x + [3 12] y + [15]
                                   [0 4]     [0  0]     [13]
                                >= [1 4] x + [3 12] y + [15]
                                   [0 4]     [0  0]     [12]
                                =  if_mod(le(y,x),s(x),s(y))
      
*** 1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        if_mod(false(),s(x),s(y)) -> s(x)
        if_mod(true(),s(x),s(y)) -> mod(minus(x,y),s(y))
        le(0(),y) -> true()
        le(s(x),0()) -> false()
        le(s(x),s(y)) -> le(x,y)
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        mod(0(),y) -> 0()
        mod(s(x),0()) -> 0()
        mod(s(x),s(y)) -> if_mod(le(y,x),s(x),s(y))
      Signature:
        {if_mod/3,le/2,minus/2,mod/2} / {0/0,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {if_mod,le,minus,mod}/{0,false,s,true}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).