*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) if(false(),s(x),s(y)) -> s(y) if(true(),s(x),s(y)) -> s(x) Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0} Obligation: Innermost basic terms: {f,g,if}/{0,1,c,false,s,true} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) if#(false(),s(x),s(y)) -> c_6() if#(true(),s(x),s(y)) -> c_7() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) if#(false(),s(x),s(y)) -> c_6() if#(true(),s(x),s(y)) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) if(false(),s(x),s(y)) -> s(y) if(true(),s(x),s(y)) -> s(x) Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) if#(false(),s(x),s(y)) -> c_6() if#(true(),s(x),s(y)) -> c_7() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(0()) -> c_1() f#(1()) -> c_2() f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) if#(false(),s(x),s(y)) -> c_6() if#(true(),s(x),s(y)) -> c_7() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,6,7} by application of Pre({1,2,6,7}) = {3,5}. Here rules are labelled as follows: 1: f#(0()) -> c_1() 2: f#(1()) -> c_2() 3: f#(s(x)) -> c_3(f#(x)) 4: g#(x,c(y)) -> c_4(g#(x,y)) 5: g#(x,c(y)) -> c_5(g#(x ,if(f(x),c(g(s(x),y)),c(y))) ,if#(f(x),c(g(s(x),y)),c(y)) ,f#(x) ,g#(s(x),y)) 6: if#(false(),s(x),s(y)) -> c_6() 7: if#(true(),s(x),s(y)) -> c_7() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) Strict TRS Rules: Weak DP Rules: f#(0()) -> c_1() f#(1()) -> c_2() if#(false(),s(x),s(y)) -> c_6() if#(true(),s(x),s(y)) -> c_7() Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:f#(s(x)) -> c_3(f#(x)) -->_1 f#(1()) -> c_2():5 -->_1 f#(0()) -> c_1():4 -->_1 f#(s(x)) -> c_3(f#(x)):1 2:S:g#(x,c(y)) -> c_4(g#(x,y)) -->_1 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3 -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2 3:S:g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) -->_3 f#(1()) -> c_2():5 -->_3 f#(0()) -> c_1():4 -->_4 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3 -->_4 g#(x,c(y)) -> c_4(g#(x,y)):2 -->_3 f#(s(x)) -> c_3(f#(x)):1 4:W:f#(0()) -> c_1() 5:W:f#(1()) -> c_2() 6:W:if#(false(),s(x),s(y)) -> c_6() 7:W:if#(true(),s(x),s(y)) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: if#(true(),s(x),s(y)) -> c_7() 6: if#(false(),s(x),s(y)) -> c_6() 4: f#(0()) -> c_1() 5: f#(1()) -> c_2() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 2:S:g#(x,c(y)) -> c_4(g#(x,y)) -->_1 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3 -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2 3:S:g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)) -->_4 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3 -->_4 g#(x,c(y)) -> c_4(g#(x,y)):2 -->_3 f#(s(x)) -> c_3(f#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(0()) -> true() f(1()) -> false() f(s(x)) -> f(x) g(x,c(y)) -> c(g(x,y)) g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y))) Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: f#(s(x)) -> c_3(f#(x)) Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Problem (S) Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: f#(s(x)) -> c_3(f#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: f#(s(x)) -> c_3(f#(x)) Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1,2} Following symbols are considered usable: {f#,g#,if#} TcT has computed the following interpretation: p(0) = 1 p(1) = 1 p(c) = 1 + x1 p(f) = 4 p(false) = 0 p(g) = 2 + 4*x1^2 p(if) = 1 + x1 + 4*x1^2 + 4*x2 + 4*x3 + x3^2 p(s) = 1 + x1 p(true) = 0 p(f#) = 2 + 3*x1 p(g#) = 1 + 5*x1 + 7*x1*x2 + 2*x1^2 + 5*x2 + 5*x2^2 p(if#) = 1 + 2*x1 + x1*x3 + 4*x1^2 + 2*x2 + x2^2 + x3 p(c_1) = 0 p(c_2) = 1 p(c_3) = x1 p(c_4) = x1 p(c_5) = x1 + x2 p(c_6) = 0 p(c_7) = 0 Following rules are strictly oriented: f#(s(x)) = 5 + 3*x > 2 + 3*x = c_3(f#(x)) Following rules are (at-least) weakly oriented: g#(x,c(y)) = 11 + 12*x + 7*x*y + 2*x^2 + 15*y + 5*y^2 >= 1 + 5*x + 7*x*y + 2*x^2 + 5*y + 5*y^2 = c_4(g#(x,y)) g#(x,c(y)) = 11 + 12*x + 7*x*y + 2*x^2 + 15*y + 5*y^2 >= 10 + 12*x + 7*x*y + 2*x^2 + 12*y + 5*y^2 = c_5(f#(x),g#(s(x),y)) *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):1 2:W:g#(x,c(y)) -> c_4(g#(x,y)) -->_1 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):3 -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2 3:W:g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) -->_2 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):3 -->_2 g#(x,c(y)) -> c_4(g#(x,y)):2 -->_1 f#(s(x)) -> c_3(f#(x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: g#(x,c(y)) -> c_4(g#(x,y)) 3: g#(x,c(y)) -> c_5(f#(x) ,g#(s(x),y)) 1: f#(s(x)) -> c_3(f#(x)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Strict TRS Rules: Weak DP Rules: f#(s(x)) -> c_3(f#(x)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:g#(x,c(y)) -> c_4(g#(x,y)) -->_1 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1 2:S:g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) -->_1 f#(s(x)) -> c_3(f#(x)):3 -->_2 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2 -->_2 g#(x,c(y)) -> c_4(g#(x,y)):1 3:W:f#(s(x)) -> c_3(f#(x)) -->_1 f#(s(x)) -> c_3(f#(x)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: f#(s(x)) -> c_3(f#(x)) *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:g#(x,c(y)) -> c_4(g#(x,y)) -->_1 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1 2:S:g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)) -->_2 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2 -->_2 g#(x,c(y)) -> c_4(g#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: g#(x,c(y)) -> c_5(g#(s(x),y)) *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(s(x),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: g#(x,c(y)) -> c_4(g#(x,y)) 2: g#(x,c(y)) -> c_5(g#(s(x),y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(s(x),y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_4) = {1}, uargs(c_5) = {1} Following symbols are considered usable: {f#,g#,if#} TcT has computed the following interpretation: p(0) = [0] p(1) = [0] p(c) = [1] x1 + [8] p(f) = [0] p(false) = [0] p(g) = [0] p(if) = [0] p(s) = [0] p(true) = [8] p(f#) = [1] x1 + [8] p(g#) = [2] x2 + [0] p(if#) = [2] x1 + [2] x2 + [1] p(c_1) = [1] p(c_2) = [1] p(c_3) = [2] x1 + [1] p(c_4) = [1] x1 + [6] p(c_5) = [1] x1 + [4] p(c_6) = [0] p(c_7) = [1] Following rules are strictly oriented: g#(x,c(y)) = [2] y + [16] > [2] y + [6] = c_4(g#(x,y)) g#(x,c(y)) = [2] y + [16] > [2] y + [4] = c_5(g#(s(x),y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(s(x),y)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: g#(x,c(y)) -> c_4(g#(x,y)) g#(x,c(y)) -> c_5(g#(s(x),y)) Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:g#(x,c(y)) -> c_4(g#(x,y)) -->_1 g#(x,c(y)) -> c_5(g#(s(x),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1 2:W:g#(x,c(y)) -> c_5(g#(s(x),y)) -->_1 g#(x,c(y)) -> c_5(g#(s(x),y)):2 -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: g#(x,c(y)) -> c_4(g#(x,y)) 2: g#(x,c(y)) -> c_5(g#(s(x),y)) *** 1.1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0} Obligation: Innermost basic terms: {f#,g#,if#}/{0,1,c,false,s,true} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).