*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        f(0()) -> true()
        f(1()) -> false()
        f(s(x)) -> f(x)
        g(x,c(y)) -> c(g(x,y))
        g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
        if(false(),s(x),s(y)) -> s(y)
        if(true(),s(x),s(y)) -> s(x)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f/1,g/2,if/3} / {0/0,1/0,c/1,false/0,s/1,true/0}
      Obligation:
        Innermost
        basic terms: {f,g,if}/{0,1,c,false,s,true}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        f#(0()) -> c_1()
        f#(1()) -> c_2()
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
        if#(false(),s(x),s(y)) -> c_6()
        if#(true(),s(x),s(y)) -> c_7()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(0()) -> c_1()
        f#(1()) -> c_2()
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
        if#(false(),s(x),s(y)) -> c_6()
        if#(true(),s(x),s(y)) -> c_7()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        f(0()) -> true()
        f(1()) -> false()
        f(s(x)) -> f(x)
        g(x,c(y)) -> c(g(x,y))
        g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
        if(false(),s(x),s(y)) -> s(y)
        if(true(),s(x),s(y)) -> s(x)
      Signature:
        {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0}
      Obligation:
        Innermost
        basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        f(0()) -> true()
        f(1()) -> false()
        f(s(x)) -> f(x)
        g(x,c(y)) -> c(g(x,y))
        g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
        f#(0()) -> c_1()
        f#(1()) -> c_2()
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
        if#(false(),s(x),s(y)) -> c_6()
        if#(true(),s(x),s(y)) -> c_7()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(0()) -> c_1()
        f#(1()) -> c_2()
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
        if#(false(),s(x),s(y)) -> c_6()
        if#(true(),s(x),s(y)) -> c_7()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        f(0()) -> true()
        f(1()) -> false()
        f(s(x)) -> f(x)
        g(x,c(y)) -> c(g(x,y))
        g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
      Signature:
        {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0}
      Obligation:
        Innermost
        basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,6,7}
      by application of
        Pre({1,2,6,7}) = {3,5}.
      Here rules are labelled as follows:
        1: f#(0()) -> c_1()                                
        2: f#(1()) -> c_2()                                
        3: f#(s(x)) -> c_3(f#(x))                          
        4: g#(x,c(y)) -> c_4(g#(x,y))                      
        5: g#(x,c(y)) -> c_5(g#(x                          
                               ,if(f(x),c(g(s(x),y)),c(y)))
                            ,if#(f(x),c(g(s(x),y)),c(y))   
                            ,f#(x)                         
                            ,g#(s(x),y))                   
        6: if#(false(),s(x),s(y)) -> c_6()                 
        7: if#(true(),s(x),s(y)) -> c_7()                  
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
      Strict TRS Rules:
        
      Weak DP Rules:
        f#(0()) -> c_1()
        f#(1()) -> c_2()
        if#(false(),s(x),s(y)) -> c_6()
        if#(true(),s(x),s(y)) -> c_7()
      Weak TRS Rules:
        f(0()) -> true()
        f(1()) -> false()
        f(s(x)) -> f(x)
        g(x,c(y)) -> c(g(x,y))
        g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
      Signature:
        {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0}
      Obligation:
        Innermost
        basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:f#(s(x)) -> c_3(f#(x))
           -->_1 f#(1()) -> c_2():5
           -->_1 f#(0()) -> c_1():4
           -->_1 f#(s(x)) -> c_3(f#(x)):1
        
        2:S:g#(x,c(y)) -> c_4(g#(x,y))
           -->_1 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
           -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2
        
        3:S:g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
           -->_3 f#(1()) -> c_2():5
           -->_3 f#(0()) -> c_1():4
           -->_4 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
           -->_4 g#(x,c(y)) -> c_4(g#(x,y)):2
           -->_3 f#(s(x)) -> c_3(f#(x)):1
        
        4:W:f#(0()) -> c_1()
           
        
        5:W:f#(1()) -> c_2()
           
        
        6:W:if#(false(),s(x),s(y)) -> c_6()
           
        
        7:W:if#(true(),s(x),s(y)) -> c_7()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        7: if#(true(),s(x),s(y)) -> c_7() 
        6: if#(false(),s(x),s(y)) -> c_6()
        4: f#(0()) -> c_1()               
        5: f#(1()) -> c_2()               
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        f(0()) -> true()
        f(1()) -> false()
        f(s(x)) -> f(x)
        g(x,c(y)) -> c(g(x,y))
        g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
      Signature:
        {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/4,c_6/0,c_7/0}
      Obligation:
        Innermost
        basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:f#(s(x)) -> c_3(f#(x))
           -->_1 f#(s(x)) -> c_3(f#(x)):1
        
        2:S:g#(x,c(y)) -> c_4(g#(x,y))
           -->_1 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
           -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2
        
        3:S:g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y))
           -->_4 g#(x,c(y)) -> c_5(g#(x,if(f(x),c(g(s(x),y)),c(y))),if#(f(x),c(g(s(x),y)),c(y)),f#(x),g#(s(x),y)):3
           -->_4 g#(x,c(y)) -> c_4(g#(x,y)):2
           -->_3 f#(s(x)) -> c_3(f#(x)):1
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        f(0()) -> true()
        f(1()) -> false()
        f(s(x)) -> f(x)
        g(x,c(y)) -> c(g(x,y))
        g(x,c(y)) -> g(x,if(f(x),c(g(s(x),y)),c(y)))
      Signature:
        {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
      Obligation:
        Innermost
        basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
*** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        f#(s(x)) -> c_3(f#(x))
        g#(x,c(y)) -> c_4(g#(x,y))
        g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
      Obligation:
        Innermost
        basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          f#(s(x)) -> c_3(f#(x))
        Strict TRS Rules:
          
        Weak DP Rules:
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        Obligation:
          Innermost
          basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
      
      Problem (S)
        Strict DP Rules:
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f#(s(x)) -> c_3(f#(x))
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        Obligation:
          Innermost
          basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          f#(s(x)) -> c_3(f#(x))
        Strict TRS Rules:
          
        Weak DP Rules:
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        Obligation:
          Innermost
          basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: f#(s(x)) -> c_3(f#(x))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            f#(s(x)) -> c_3(f#(x))
          Strict TRS Rules:
            
          Weak DP Rules:
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_3) = {1},
            uargs(c_4) = {1},
            uargs(c_5) = {1,2}
          
          Following symbols are considered usable:
            {f#,g#,if#}
          TcT has computed the following interpretation:
                p(0) = 1                                           
                p(1) = 1                                           
                p(c) = 1 + x1                                      
                p(f) = 4                                           
            p(false) = 0                                           
                p(g) = 2 + 4*x1^2                                  
               p(if) = 1 + x1 + 4*x1^2 + 4*x2 + 4*x3 + x3^2        
                p(s) = 1 + x1                                      
             p(true) = 0                                           
               p(f#) = 2 + 3*x1                                    
               p(g#) = 1 + 5*x1 + 7*x1*x2 + 2*x1^2 + 5*x2 + 5*x2^2 
              p(if#) = 1 + 2*x1 + x1*x3 + 4*x1^2 + 2*x2 + x2^2 + x3
              p(c_1) = 0                                           
              p(c_2) = 1                                           
              p(c_3) = x1                                          
              p(c_4) = x1                                          
              p(c_5) = x1 + x2                                     
              p(c_6) = 0                                           
              p(c_7) = 0                                           
          
          Following rules are strictly oriented:
          f#(s(x)) = 5 + 3*x   
                   > 2 + 3*x   
                   = c_3(f#(x))
          
          
          Following rules are (at-least) weakly oriented:
          g#(x,c(y)) =  11 + 12*x + 7*x*y + 2*x^2 + 15*y + 5*y^2
                     >= 1 + 5*x + 7*x*y + 2*x^2 + 5*y + 5*y^2   
                     =  c_4(g#(x,y))                            
          
          g#(x,c(y)) =  11 + 12*x + 7*x*y + 2*x^2 + 15*y + 5*y^2
                     >= 10 + 12*x + 7*x*y + 2*x^2 + 12*y + 5*y^2
                     =  c_5(f#(x),g#(s(x),y))                   
          
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            f#(s(x)) -> c_3(f#(x))
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:f#(s(x)) -> c_3(f#(x))
               -->_1 f#(s(x)) -> c_3(f#(x)):1
            
            2:W:g#(x,c(y)) -> c_4(g#(x,y))
               -->_1 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):3
               -->_1 g#(x,c(y)) -> c_4(g#(x,y)):2
            
            3:W:g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
               -->_2 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):3
               -->_2 g#(x,c(y)) -> c_4(g#(x,y)):2
               -->_1 f#(s(x)) -> c_3(f#(x)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: g#(x,c(y)) -> c_4(g#(x,y))   
            3: g#(x,c(y)) -> c_5(f#(x)      
                                ,g#(s(x),y))
            1: f#(s(x)) -> c_3(f#(x))       
    *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        Strict TRS Rules:
          
        Weak DP Rules:
          f#(s(x)) -> c_3(f#(x))
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        Obligation:
          Innermost
          basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:g#(x,c(y)) -> c_4(g#(x,y))
             -->_1 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2
             -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1
          
          2:S:g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
             -->_1 f#(s(x)) -> c_3(f#(x)):3
             -->_2 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2
             -->_2 g#(x,c(y)) -> c_4(g#(x,y)):1
          
          3:W:f#(s(x)) -> c_3(f#(x))
             -->_1 f#(s(x)) -> c_3(f#(x)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: f#(s(x)) -> c_3(f#(x))
  *** 1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/2,c_6/0,c_7/0}
        Obligation:
          Innermost
          basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:g#(x,c(y)) -> c_4(g#(x,y))
             -->_1 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2
             -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1
          
          2:S:g#(x,c(y)) -> c_5(f#(x),g#(s(x),y))
             -->_2 g#(x,c(y)) -> c_5(f#(x),g#(s(x),y)):2
             -->_2 g#(x,c(y)) -> c_4(g#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          g#(x,c(y)) -> c_5(g#(s(x),y))
  *** 1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          g#(x,c(y)) -> c_4(g#(x,y))
          g#(x,c(y)) -> c_5(g#(s(x),y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
        Obligation:
          Innermost
          basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: g#(x,c(y)) -> c_4(g#(x,y))   
          2: g#(x,c(y)) -> c_5(g#(s(x),y))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(s(x),y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_4) = {1},
            uargs(c_5) = {1}
          
          Following symbols are considered usable:
            {f#,g#,if#}
          TcT has computed the following interpretation:
                p(0) = [0]                  
                p(1) = [0]                  
                p(c) = [1] x1 + [8]         
                p(f) = [0]                  
            p(false) = [0]                  
                p(g) = [0]                  
               p(if) = [0]                  
                p(s) = [0]                  
             p(true) = [8]                  
               p(f#) = [1] x1 + [8]         
               p(g#) = [2] x2 + [0]         
              p(if#) = [2] x1 + [2] x2 + [1]
              p(c_1) = [1]                  
              p(c_2) = [1]                  
              p(c_3) = [2] x1 + [1]         
              p(c_4) = [1] x1 + [6]         
              p(c_5) = [1] x1 + [4]         
              p(c_6) = [0]                  
              p(c_7) = [1]                  
          
          Following rules are strictly oriented:
          g#(x,c(y)) = [2] y + [16]   
                     > [2] y + [6]    
                     = c_4(g#(x,y))   
          
          g#(x,c(y)) = [2] y + [16]   
                     > [2] y + [4]    
                     = c_5(g#(s(x),y))
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(s(x),y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            g#(x,c(y)) -> c_4(g#(x,y))
            g#(x,c(y)) -> c_5(g#(s(x),y))
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:g#(x,c(y)) -> c_4(g#(x,y))
               -->_1 g#(x,c(y)) -> c_5(g#(s(x),y)):2
               -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1
            
            2:W:g#(x,c(y)) -> c_5(g#(s(x),y))
               -->_1 g#(x,c(y)) -> c_5(g#(s(x),y)):2
               -->_1 g#(x,c(y)) -> c_4(g#(x,y)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: g#(x,c(y)) -> c_4(g#(x,y))   
            2: g#(x,c(y)) -> c_5(g#(s(x),y))
    *** 1.1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f/1,g/2,if/3,f#/1,g#/2,if#/3} / {0/0,1/0,c/1,false/0,s/1,true/0,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/0}
          Obligation:
            Innermost
            basic terms: {f#,g#,if#}/{0,1,c,false,s,true}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).