(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
p(s(x)) → x
fac(0) → s(0)
fac(s(x)) → times(s(x), fac(p(s(x))))
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(s(x)) → x
fac(0') → s(0')
fac(s(x)) → times(s(x), fac(p(s(x))))
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
times/0
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(s(x)) → x
fac(0') → s(0')
fac(s(x)) → times(fac(p(s(x))))
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
p(s(x)) → x
fac(0') → s(0')
fac(s(x)) → times(fac(p(s(x))))
Types:
p :: s:0':times → s:0':times
s :: s:0':times → s:0':times
fac :: s:0':times → s:0':times
0' :: s:0':times
times :: s:0':times → s:0':times
hole_s:0':times1_0 :: s:0':times
gen_s:0':times2_0 :: Nat → s:0':times
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
fac
(8) Obligation:
Innermost TRS:
Rules:
p(
s(
x)) →
xfac(
0') →
s(
0')
fac(
s(
x)) →
times(
fac(
p(
s(
x))))
Types:
p :: s:0':times → s:0':times
s :: s:0':times → s:0':times
fac :: s:0':times → s:0':times
0' :: s:0':times
times :: s:0':times → s:0':times
hole_s:0':times1_0 :: s:0':times
gen_s:0':times2_0 :: Nat → s:0':times
Generator Equations:
gen_s:0':times2_0(0) ⇔ 0'
gen_s:0':times2_0(+(x, 1)) ⇔ s(gen_s:0':times2_0(x))
The following defined symbols remain to be analysed:
fac
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
fac(
gen_s:0':times2_0(
n4_0)) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
fac(gen_s:0':times2_0(0))
Induction Step:
fac(gen_s:0':times2_0(+(n4_0, 1))) →RΩ(1)
times(fac(p(s(gen_s:0':times2_0(n4_0))))) →RΩ(1)
times(fac(gen_s:0':times2_0(n4_0))) →IH
times(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
p(
s(
x)) →
xfac(
0') →
s(
0')
fac(
s(
x)) →
times(
fac(
p(
s(
x))))
Types:
p :: s:0':times → s:0':times
s :: s:0':times → s:0':times
fac :: s:0':times → s:0':times
0' :: s:0':times
times :: s:0':times → s:0':times
hole_s:0':times1_0 :: s:0':times
gen_s:0':times2_0 :: Nat → s:0':times
Lemmas:
fac(gen_s:0':times2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s:0':times2_0(0) ⇔ 0'
gen_s:0':times2_0(+(x, 1)) ⇔ s(gen_s:0':times2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fac(gen_s:0':times2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
p(
s(
x)) →
xfac(
0') →
s(
0')
fac(
s(
x)) →
times(
fac(
p(
s(
x))))
Types:
p :: s:0':times → s:0':times
s :: s:0':times → s:0':times
fac :: s:0':times → s:0':times
0' :: s:0':times
times :: s:0':times → s:0':times
hole_s:0':times1_0 :: s:0':times
gen_s:0':times2_0 :: Nat → s:0':times
Lemmas:
fac(gen_s:0':times2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_s:0':times2_0(0) ⇔ 0'
gen_s:0':times2_0(+(x, 1)) ⇔ s(gen_s:0':times2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
fac(gen_s:0':times2_0(n4_0)) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)