*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Weak DP Rules: Weak TRS Rules: Signature: {minus/2,plus/2,quot/2} / {0/0,s/1} Obligation: Innermost basic terms: {minus,plus,quot}/{0,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(0(),s(y)) -> c_7() quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(0(),s(y)) -> c_7() quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) quot(0(),s(y)) -> 0() quot(s(x),s(y)) -> s(quot(minus(x,y),s(y))) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(0(),s(y)) -> c_7() quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(x,0()) -> c_1() minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(0(),y) -> c_3() plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(0(),s(y)) -> c_7() quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,3,7} by application of Pre({1,3,7}) = {2,4,5,6,8}. Here rules are labelled as follows: 1: minus#(x,0()) -> c_1() 2: minus#(s(x),s(y)) -> c_2(minus#(x,y)) 3: plus#(0(),y) -> c_3() 4: plus#(minus(x,s(0())) ,minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0()))) ,minus#(y,s(s(z))) ,minus#(x,s(0()))) 5: plus#(plus(x,s(0())) ,plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0()))) ,plus#(y,s(s(z))) ,plus#(x,s(0()))) 6: plus#(s(x),y) -> c_6(plus#(x,y)) 7: quot#(0(),s(y)) -> c_7() 8: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)) ,minus#(x,y)) *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: minus#(x,0()) -> c_1() plus#(0(),y) -> c_3() quot#(0(),s(y)) -> c_7() Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(x,0()) -> c_1():6 -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3 -->_1 plus#(0(),y) -> c_3():7 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2 -->_3 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 3:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(0(),y) -> c_3():7 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2 4:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(0(),y) -> c_3():7 -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2 5:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(0(),s(y)) -> c_7():8 -->_2 minus#(x,0()) -> c_1():6 -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 6:W:minus#(x,0()) -> c_1() 7:W:plus#(0(),y) -> c_3() 8:W:quot#(0(),s(y)) -> c_7() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 8: quot#(0(),s(y)) -> c_7() 7: plus#(0(),y) -> c_3() 6: minus#(x,0()) -> c_1() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2 -->_3 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 3:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2 4:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2 5:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Problem (S) Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: minus#(s(x),s(y)) -> c_2(minus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {2}, uargs(c_6) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {minus,minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [3] [1] p(minus) = [1 0] x1 + [0] [0 1] [0] p(plus) = [0 0] x1 + [0] [2 0] [0] p(quot) = [2] [2] p(s) = [1 2] x1 + [0] [0 1] [2] p(minus#) = [0 2] x1 + [0] [0 0] [1] p(plus#) = [0 3] x1 + [0 0] x2 + [1] [0 0] [0 1] [0] p(quot#) = [2 0] x1 + [1 0] x2 + [0] [0 1] [0 0] [0] p(c_1) = [0] [2] p(c_2) = [1 2] x1 + [0] [0 0] [0] p(c_3) = [1] [2] p(c_4) = [0 1] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] p(c_5) = [0] [0] p(c_6) = [1 0] x1 + [0] [0 0] [0] p(c_7) = [0] [2] p(c_8) = [1 2] x1 + [1 0] x2 + [0] [0 0] [0 0] [0] Following rules are strictly oriented: minus#(s(x),s(y)) = [0 2] x + [4] [0 0] [1] > [0 2] x + [2] [0 0] [0] = c_2(minus#(x,y)) Following rules are (at-least) weakly oriented: plus#(minus(x,s(0())) = [0 3] x + [0 0] y + [1] ,minus(y,s(s(z)))) [0 0] [0 1] [0] >= [0 3] x + [0] [0 0] [0] = c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0()))) ,minus#(x,s(0()))) plus#(plus(x,s(0())) = [6 0] x + [0 0] y + [1] ,plus(y,s(s(z)))) [0 0] [2 0] [0] >= [0] [0] = c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) plus#(s(x),y) = [0 3] x + [0 0] y + [7] [0 0] [0 1] [0] >= [0 3] x + [1] [0 0] [0] = c_6(plus#(x,y)) quot#(s(x),s(y)) = [2 4] x + [1 2] y + [0] [0 1] [0 0] [2] >= [2 4] x + [1 2] y + [0] [0 0] [0 0] [0] = c_8(quot#(minus(x,y),s(y)) ,minus#(x,y)) minus(x,0()) = [1 0] x + [0] [0 1] [0] >= [1 0] x + [0] [0 1] [0] = x minus(s(x),s(y)) = [1 2] x + [0] [0 1] [2] >= [1 0] x + [0] [0 1] [0] = minus(x,y) *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 2:W:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):2 -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 3:W:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):2 4:W:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):2 5:W:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5 -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)) ,minus#(x,y)) 2: plus#(minus(x,s(0())) ,minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0()))) ,minus#(x,s(0()))) 4: plus#(s(x),y) -> c_6(plus#(x,y)) 3: plus#(plus(x,s(0())) ,plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) 1: minus#(s(x),s(y)) -> c_2(minus#(x,y)) *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: minus#(s(x),s(y)) -> c_2(minus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):5 -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1 2:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1 3:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1 4:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):5 -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):4 5:W:minus#(s(x),s(y)) -> c_2(minus#(x,y)) -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):5 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 5: minus#(s(x),s(y)) -> c_2(minus#(x,y)) *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1 2:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1 3:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1 4:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):4 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Problem (S) Strict DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1 2:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1 3:S:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1 4:W:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))):4 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(minus(x,s(0())) ,minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0())))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [2] p(minus) = [1] x2 + [0] p(plus) = [1] x1 + [0] p(quot) = [8] p(s) = [1] p(minus#) = [1] x1 + [1] x2 + [1] p(plus#) = [8] x2 + [0] p(quot#) = [1] x2 + [2] p(c_1) = [1] p(c_2) = [1] x1 + [2] p(c_3) = [1] p(c_4) = [4] p(c_5) = [0] p(c_6) = [1] x1 + [0] p(c_7) = [1] p(c_8) = [1] x1 + [1] Following rules are strictly oriented: plus#(minus(x,s(0())) = [8] ,minus(y,s(s(z)))) > [4] = c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0())))) Following rules are (at-least) weakly oriented: plus#(plus(x,s(0())) = [8] y + [0] ,plus(y,s(s(z)))) >= [0] = c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) plus#(s(x),y) = [8] y + [0] >= [8] y + [0] = c_6(plus#(x,y)) *** 1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(plus(x,s(0())) ,plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1.2.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(minus) = [5] p(plus) = [1] x1 + [11] p(quot) = [1] x2 + [0] p(s) = [4] p(minus#) = [1] x1 + [0] p(plus#) = [2] x2 + [1] p(quot#) = [1] x2 + [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] p(c_4) = [11] p(c_5) = [1] p(c_6) = [1] x1 + [0] p(c_7) = [0] p(c_8) = [2] Following rules are strictly oriented: plus#(plus(x,s(0())) = [2] y + [23] ,plus(y,s(s(z)))) > [1] = c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) Following rules are (at-least) weakly oriented: plus#(minus(x,s(0())) = [11] ,minus(y,s(s(z)))) >= [11] = c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0())))) plus#(s(x),y) = [2] y + [1] >= [2] y + [1] = c_6(plus#(x,y)) *** 1.1.1.1.1.1.2.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.1.2.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(s(x),y) -> c_6(plus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.1.1.2.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_6(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [1] p(minus) = [1] p(plus) = [1] x2 + [2] p(quot) = [0] p(s) = [1] x1 + [4] p(minus#) = [0] p(plus#) = [2] x1 + [8] p(quot#) = [0] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [1] p(c_6) = [1] x1 + [3] p(c_7) = [0] p(c_8) = [0] Following rules are strictly oriented: plus#(s(x),y) = [2] x + [16] > [2] x + [11] = c_6(plus#(x,y)) Following rules are (at-least) weakly oriented: plus#(minus(x,s(0())) = [10] ,minus(y,s(s(z)))) >= [0] = c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0())))) plus#(plus(x,s(0())) = [22] ,plus(y,s(s(z)))) >= [1] = c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) *** 1.1.1.1.1.1.2.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.1.1.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1 2:W:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1 3:W:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: plus#(minus(x,s(0())) ,minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0())))) 3: plus#(s(x),y) -> c_6(plus#(x,y)) 2: plus#(plus(x,s(0())) ,plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) *** 1.1.1.1.1.1.2.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) plus#(s(x),y) -> c_6(plus#(x,y)) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))):1 2:W:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2 3:W:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2 4:W:plus#(s(x),y) -> c_6(plus#(x,y)) -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4 -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3 -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: plus#(minus(x,s(0())) ,minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))) ,minus(x,s(0())))) 4: plus#(s(x),y) -> c_6(plus#(x,y)) 3: plus#(plus(x,s(0())) ,plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))) ,plus(x,s(0())))) *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) plus(0(),y) -> y plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0()))) plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0()))) plus(s(x),y) -> s(plus(x,y)) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {minus,minus#,plus#,quot#} TcT has computed the following interpretation: p(0) = [0] p(minus) = [1] x1 + [0] p(plus) = [1] x1 + [2] p(quot) = [2] x1 + [1] x2 + [0] p(s) = [1] x1 + [4] p(minus#) = [1] x2 + [0] p(plus#) = [2] x1 + [1] x2 + [0] p(quot#) = [4] x1 + [2] x2 + [0] p(c_1) = [1] p(c_2) = [2] p(c_3) = [8] p(c_4) = [1] p(c_5) = [0] p(c_6) = [1] p(c_7) = [1] p(c_8) = [1] x1 + [3] Following rules are strictly oriented: quot#(s(x),s(y)) = [4] x + [2] y + [24] > [4] x + [2] y + [11] = c_8(quot#(minus(x,y),s(y))) Following rules are (at-least) weakly oriented: minus(x,0()) = [1] x + [0] >= [1] x + [0] = x minus(s(x),s(y)) = [1] x + [4] >= [1] x + [0] = minus(x,y) *** 1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))) *** 1.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: minus(x,0()) -> x minus(s(x),s(y)) -> minus(x,y) Signature: {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1} Obligation: Innermost basic terms: {minus#,plus#,quot#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).