*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        plus(0(),y) -> y
        plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
        plus(s(x),y) -> s(plus(x,y))
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {minus/2,plus/2,quot/2} / {0/0,s/1}
      Obligation:
        Innermost
        basic terms: {minus,plus,quot}/{0,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        minus#(x,0()) -> c_1()
        minus#(s(x),s(y)) -> c_2(minus#(x,y))
        plus#(0(),y) -> c_3()
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
        plus#(s(x),y) -> c_6(plus#(x,y))
        quot#(0(),s(y)) -> c_7()
        quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(x,0()) -> c_1()
        minus#(s(x),s(y)) -> c_2(minus#(x,y))
        plus#(0(),y) -> c_3()
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
        plus#(s(x),y) -> c_6(plus#(x,y))
        quot#(0(),s(y)) -> c_7()
        quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        plus(0(),y) -> y
        plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
        plus(s(x),y) -> s(plus(x,y))
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Signature:
        {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2}
      Obligation:
        Innermost
        basic terms: {minus#,plus#,quot#}/{0,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        plus(0(),y) -> y
        plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
        plus(s(x),y) -> s(plus(x,y))
        minus#(x,0()) -> c_1()
        minus#(s(x),s(y)) -> c_2(minus#(x,y))
        plus#(0(),y) -> c_3()
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
        plus#(s(x),y) -> c_6(plus#(x,y))
        quot#(0(),s(y)) -> c_7()
        quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(x,0()) -> c_1()
        minus#(s(x),s(y)) -> c_2(minus#(x,y))
        plus#(0(),y) -> c_3()
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
        plus#(s(x),y) -> c_6(plus#(x,y))
        quot#(0(),s(y)) -> c_7()
        quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        plus(0(),y) -> y
        plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
        plus(s(x),y) -> s(plus(x,y))
      Signature:
        {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2}
      Obligation:
        Innermost
        basic terms: {minus#,plus#,quot#}/{0,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,3,7}
      by application of
        Pre({1,3,7}) = {2,4,5,6,8}.
      Here rules are labelled as follows:
        1: minus#(x,0()) -> c_1()          
        2: minus#(s(x),s(y)) ->            
             c_2(minus#(x,y))              
        3: plus#(0(),y) -> c_3()           
        4: plus#(minus(x,s(0()))           
                ,minus(y,s(s(z)))) ->      
             c_4(plus#(minus(y,s(s(z)))    
                      ,minus(x,s(0())))    
                ,minus#(y,s(s(z)))         
                ,minus#(x,s(0())))         
        5: plus#(plus(x,s(0()))            
                ,plus(y,s(s(z)))) ->       
             c_5(plus#(plus(y,s(s(z)))     
                      ,plus(x,s(0())))     
                ,plus#(y,s(s(z)))          
                ,plus#(x,s(0())))          
        6: plus#(s(x),y) -> c_6(plus#(x,y))
        7: quot#(0(),s(y)) -> c_7()        
        8: quot#(s(x),s(y)) ->             
             c_8(quot#(minus(x,y),s(y))    
                ,minus#(x,y))              
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(s(x),s(y)) -> c_2(minus#(x,y))
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
        plus#(s(x),y) -> c_6(plus#(x,y))
        quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        minus#(x,0()) -> c_1()
        plus#(0(),y) -> c_3()
        quot#(0(),s(y)) -> c_7()
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        plus(0(),y) -> y
        plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
        plus(s(x),y) -> s(plus(x,y))
      Signature:
        {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2}
      Obligation:
        Innermost
        basic terms: {minus#,plus#,quot#}/{0,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y))
           -->_1 minus#(x,0()) -> c_1():6
           -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
        
        2:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
           -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
           -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3
           -->_1 plus#(0(),y) -> c_3():7
           -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2
           -->_3 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
        
        3:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
           -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
           -->_1 plus#(0(),y) -> c_3():7
           -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3
           -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2
        
        4:S:plus#(s(x),y) -> c_6(plus#(x,y))
           -->_1 plus#(0(),y) -> c_3():7
           -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
           -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3
           -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2
        
        5:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
           -->_1 quot#(0(),s(y)) -> c_7():8
           -->_2 minus#(x,0()) -> c_1():6
           -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5
           -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
        
        6:W:minus#(x,0()) -> c_1()
           
        
        7:W:plus#(0(),y) -> c_3()
           
        
        8:W:quot#(0(),s(y)) -> c_7()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        8: quot#(0(),s(y)) -> c_7()
        7: plus#(0(),y) -> c_3()   
        6: minus#(x,0()) -> c_1()  
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(s(x),s(y)) -> c_2(minus#(x,y))
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
        plus#(s(x),y) -> c_6(plus#(x,y))
        quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        plus(0(),y) -> y
        plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
        plus(s(x),y) -> s(plus(x,y))
      Signature:
        {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/3,c_5/3,c_6/1,c_7/0,c_8/2}
      Obligation:
        Innermost
        basic terms: {minus#,plus#,quot#}/{0,s}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:minus#(s(x),s(y)) -> c_2(minus#(x,y))
           -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
        
        2:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0())))
           -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
           -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3
           -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2
           -->_3 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
        
        3:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0())))
           -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
           -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3
           -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2
        
        4:S:plus#(s(x),y) -> c_6(plus#(x,y))
           -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
           -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))),plus#(y,s(s(z))),plus#(x,s(0()))):3
           -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(y,s(s(z))),minus#(x,s(0()))):2
        
        5:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
           -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5
           -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(s(x),s(y)) -> c_2(minus#(x,y))
        plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
        plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
        plus#(s(x),y) -> c_6(plus#(x,y))
        quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(s(x),s(y)) -> minus(x,y)
        plus(0(),y) -> y
        plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
        plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
        plus(s(x),y) -> s(plus(x,y))
      Signature:
        {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
      Obligation:
        Innermost
        basic terms: {minus#,plus#,quot#}/{0,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
          plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
          plus#(s(x),y) -> c_6(plus#(x,y))
          quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          plus(0(),y) -> y
          plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
          plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
        Obligation:
          Innermost
          basic terms: {minus#,plus#,quot#}/{0,s}
      
      Problem (S)
        Strict DP Rules:
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
          plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
          plus#(s(x),y) -> c_6(plus#(x,y))
          quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          plus(0(),y) -> y
          plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
          plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
        Obligation:
          Innermost
          basic terms: {minus#,plus#,quot#}/{0,s}
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
          plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
          plus#(s(x),y) -> c_6(plus#(x,y))
          quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          plus(0(),y) -> y
          plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
          plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
        Obligation:
          Innermost
          basic terms: {minus#,plus#,quot#}/{0,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: minus#(s(x),s(y)) ->
               c_2(minus#(x,y))  
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_2) = {1},
            uargs(c_4) = {2},
            uargs(c_6) = {1},
            uargs(c_8) = {1,2}
          
          Following symbols are considered usable:
            {minus,minus#,plus#,quot#}
          TcT has computed the following interpretation:
                 p(0) = [3]                      
                        [1]                      
             p(minus) = [1 0] x1 + [0]           
                        [0 1]      [0]           
              p(plus) = [0 0] x1 + [0]           
                        [2 0]      [0]           
              p(quot) = [2]                      
                        [2]                      
                 p(s) = [1 2] x1 + [0]           
                        [0 1]      [2]           
            p(minus#) = [0 2] x1 + [0]           
                        [0 0]      [1]           
             p(plus#) = [0 3] x1 + [0 0] x2 + [1]
                        [0 0]      [0 1]      [0]
             p(quot#) = [2 0] x1 + [1 0] x2 + [0]
                        [0 1]      [0 0]      [0]
               p(c_1) = [0]                      
                        [2]                      
               p(c_2) = [1 2] x1 + [0]           
                        [0 0]      [0]           
               p(c_3) = [1]                      
                        [2]                      
               p(c_4) = [0 1] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
               p(c_5) = [0]                      
                        [0]                      
               p(c_6) = [1 0] x1 + [0]           
                        [0 0]      [0]           
               p(c_7) = [0]                      
                        [2]                      
               p(c_8) = [1 2] x1 + [1 0] x2 + [0]
                        [0 0]      [0 0]      [0]
          
          Following rules are strictly oriented:
          minus#(s(x),s(y)) = [0 2] x + [4]   
                              [0 0]     [1]   
                            > [0 2] x + [2]   
                              [0 0]     [0]   
                            = c_2(minus#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
            plus#(minus(x,s(0())) =  [0 3] x + [0 0] y + [1]   
               ,minus(y,s(s(z))))    [0 0]     [0 1]     [0]   
                                  >= [0 3] x + [0]             
                                     [0 0]     [0]             
                                  =  c_4(plus#(minus(y,s(s(z)))
                                              ,minus(x,s(0())))
                                        ,minus#(x,s(0())))     
          
             plus#(plus(x,s(0())) =  [6 0] x + [0 0] y + [1]   
                ,plus(y,s(s(z))))    [0 0]     [2 0]     [0]   
                                  >= [0]                       
                                     [0]                       
                                  =  c_5(plus#(plus(y,s(s(z))) 
                                              ,plus(x,s(0()))))
          
                    plus#(s(x),y) =  [0 3] x + [0 0] y + [7]   
                                     [0 0]     [0 1]     [0]   
                                  >= [0 3] x + [1]             
                                     [0 0]     [0]             
                                  =  c_6(plus#(x,y))           
          
                 quot#(s(x),s(y)) =  [2 4] x + [1 2] y + [0]   
                                     [0 1]     [0 0]     [2]   
                                  >= [2 4] x + [1 2] y + [0]   
                                     [0 0]     [0 0]     [0]   
                                  =  c_8(quot#(minus(x,y),s(y))
                                        ,minus#(x,y))          
          
                     minus(x,0()) =  [1 0] x + [0]             
                                     [0 1]     [0]             
                                  >= [1 0] x + [0]             
                                     [0 1]     [0]             
                                  =  x                         
          
                 minus(s(x),s(y)) =  [1 2] x + [0]             
                                     [0 1]     [2]             
                                  >= [1 0] x + [0]             
                                     [0 1]     [0]             
                                  =  minus(x,y)                
          
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            minus#(s(x),s(y)) -> c_2(minus#(x,y))
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:minus#(s(x),s(y)) -> c_2(minus#(x,y))
               -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
            
            2:W:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):2
               -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
            
            3:W:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):2
            
            4:W:plus#(s(x),y) -> c_6(plus#(x,y))
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):2
            
            5:W:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
               -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):5
               -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            5: quot#(s(x),s(y)) ->             
                 c_8(quot#(minus(x,y),s(y))    
                    ,minus#(x,y))              
            2: plus#(minus(x,s(0()))           
                    ,minus(y,s(s(z)))) ->      
                 c_4(plus#(minus(y,s(s(z)))    
                          ,minus(x,s(0())))    
                    ,minus#(x,s(0())))         
            4: plus#(s(x),y) -> c_6(plus#(x,y))
            3: plus#(plus(x,s(0()))            
                    ,plus(y,s(s(z)))) ->       
                 c_5(plus#(plus(y,s(s(z)))     
                          ,plus(x,s(0()))))    
            1: minus#(s(x),s(y)) ->            
                 c_2(minus#(x,y))              
    *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
          plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
          plus#(s(x),y) -> c_6(plus#(x,y))
          quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          minus#(s(x),s(y)) -> c_2(minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          plus(0(),y) -> y
          plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
          plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
        Obligation:
          Innermost
          basic terms: {minus#,plus#,quot#}/{0,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
             -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):5
             -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
             -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1
          
          2:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
             -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
             -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1
          
          3:S:plus#(s(x),y) -> c_6(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
             -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1
          
          4:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(s(x),s(y)) -> c_2(minus#(x,y)):5
             -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):4
          
          5:W:minus#(s(x),s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(s(x),s(y)) -> c_2(minus#(x,y)):5
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          5: minus#(s(x),s(y)) ->
               c_2(minus#(x,y))  
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
          plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
          plus#(s(x),y) -> c_6(plus#(x,y))
          quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          plus(0(),y) -> y
          plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
          plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/2,c_5/1,c_6/1,c_7/0,c_8/2}
        Obligation:
          Innermost
          basic terms: {minus#,plus#,quot#}/{0,s}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0())))
             -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
             -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1
          
          2:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
             -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
             -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1
          
          3:S:plus#(s(x),y) -> c_6(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
             -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
             -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))),minus#(x,s(0()))):1
          
          4:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)),minus#(x,y)):4
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
          quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
          plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
          plus#(s(x),y) -> c_6(plus#(x,y))
          quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(s(x),s(y)) -> minus(x,y)
          plus(0(),y) -> y
          plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
          plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
        Obligation:
          Innermost
          basic terms: {minus#,plus#,quot#}/{0,s}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        
        Problem (S)
          Strict DP Rules:
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
    *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1
            
            2:S:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1
            
            3:S:plus#(s(x),y) -> c_6(plus#(x,y))
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1
            
            4:W:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
               -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))):4
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            4: quot#(s(x),s(y)) ->          
                 c_8(quot#(minus(x,y),s(y)))
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: plus#(minus(x,s(0()))        
                    ,minus(y,s(s(z)))) ->   
                 c_4(plus#(minus(y,s(s(z))) 
                          ,minus(x,s(0()))))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
              plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
              plus#(s(x),y) -> c_6(plus#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
              plus(0(),y) -> y
              plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
              plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
            Obligation:
              Innermost
              basic terms: {minus#,plus#,quot#}/{0,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_6) = {1}
            
            Following symbols are considered usable:
              {minus#,plus#,quot#}
            TcT has computed the following interpretation:
                   p(0) = [2]                  
               p(minus) = [1] x2 + [0]         
                p(plus) = [1] x1 + [0]         
                p(quot) = [8]                  
                   p(s) = [1]                  
              p(minus#) = [1] x1 + [1] x2 + [1]
               p(plus#) = [8] x2 + [0]         
               p(quot#) = [1] x2 + [2]         
                 p(c_1) = [1]                  
                 p(c_2) = [1] x1 + [2]         
                 p(c_3) = [1]                  
                 p(c_4) = [4]                  
                 p(c_5) = [0]                  
                 p(c_6) = [1] x1 + [0]         
                 p(c_7) = [1]                  
                 p(c_8) = [1] x1 + [1]         
            
            Following rules are strictly oriented:
              plus#(minus(x,s(0())) = [8]                        
                 ,minus(y,s(s(z))))                              
                                    > [4]                        
                                    = c_4(plus#(minus(y,s(s(z))) 
                                               ,minus(x,s(0()))))
            
            
            Following rules are (at-least) weakly oriented:
              plus#(plus(x,s(0())) =  [8] y + [0]               
                 ,plus(y,s(s(z))))                              
                                   >= [0]                       
                                   =  c_5(plus#(plus(y,s(s(z))) 
                                               ,plus(x,s(0()))))
            
                     plus#(s(x),y) =  [8] y + [0]               
                                   >= [8] y + [0]               
                                   =  c_6(plus#(x,y))           
            
      *** 1.1.1.1.1.1.2.1.1.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
              plus#(s(x),y) -> c_6(plus#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            Weak TRS Rules:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
              plus(0(),y) -> y
              plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
              plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
            Obligation:
              Innermost
              basic terms: {minus#,plus#,quot#}/{0,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.2.1.1.1.1.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
              plus#(s(x),y) -> c_6(plus#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            Weak TRS Rules:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
              plus(0(),y) -> y
              plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
              plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
            Obligation:
              Innermost
              basic terms: {minus#,plus#,quot#}/{0,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: plus#(plus(x,s(0()))        
                      ,plus(y,s(s(z)))) ->   
                   c_5(plus#(plus(y,s(s(z))) 
                            ,plus(x,s(0()))))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.2.1.1.1.1.2.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
                plus#(s(x),y) -> c_6(plus#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
              Weak TRS Rules:
                minus(x,0()) -> x
                minus(s(x),s(y)) -> minus(x,y)
                plus(0(),y) -> y
                plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
                plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
                plus(s(x),y) -> s(plus(x,y))
              Signature:
                {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
              Obligation:
                Innermost
                basic terms: {minus#,plus#,quot#}/{0,s}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_6) = {1}
              
              Following symbols are considered usable:
                {minus#,plus#,quot#}
              TcT has computed the following interpretation:
                     p(0) = [0]          
                 p(minus) = [5]          
                  p(plus) = [1] x1 + [11]
                  p(quot) = [1] x2 + [0] 
                     p(s) = [4]          
                p(minus#) = [1] x1 + [0] 
                 p(plus#) = [2] x2 + [1] 
                 p(quot#) = [1] x2 + [0] 
                   p(c_1) = [0]          
                   p(c_2) = [1] x1 + [0] 
                   p(c_3) = [1]          
                   p(c_4) = [11]         
                   p(c_5) = [1]          
                   p(c_6) = [1] x1 + [0] 
                   p(c_7) = [0]          
                   p(c_8) = [2]          
              
              Following rules are strictly oriented:
                plus#(plus(x,s(0())) = [2] y + [23]              
                   ,plus(y,s(s(z))))                             
                                     > [1]                       
                                     = c_5(plus#(plus(y,s(s(z))) 
                                                ,plus(x,s(0()))))
              
              
              Following rules are (at-least) weakly oriented:
                plus#(minus(x,s(0())) =  [11]                       
                   ,minus(y,s(s(z))))                               
                                      >= [11]                       
                                      =  c_4(plus#(minus(y,s(s(z))) 
                                                  ,minus(x,s(0()))))
              
                        plus#(s(x),y) =  [2] y + [1]                
                                      >= [2] y + [1]                
                                      =  c_6(plus#(x,y))            
              
        *** 1.1.1.1.1.1.2.1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                plus#(s(x),y) -> c_6(plus#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
                plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
              Weak TRS Rules:
                minus(x,0()) -> x
                minus(s(x),s(y)) -> minus(x,y)
                plus(0(),y) -> y
                plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
                plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
                plus(s(x),y) -> s(plus(x,y))
              Signature:
                {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
              Obligation:
                Innermost
                basic terms: {minus#,plus#,quot#}/{0,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.2.1.1.1.1.2.2 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                plus#(s(x),y) -> c_6(plus#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
                plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
              Weak TRS Rules:
                minus(x,0()) -> x
                minus(s(x),s(y)) -> minus(x,y)
                plus(0(),y) -> y
                plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
                plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
                plus(s(x),y) -> s(plus(x,y))
              Signature:
                {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
              Obligation:
                Innermost
                basic terms: {minus#,plus#,quot#}/{0,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: plus#(s(x),y) -> c_6(plus#(x,y))
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.2.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  plus#(s(x),y) -> c_6(plus#(x,y))
                Strict TRS Rules:
                  
                Weak DP Rules:
                  plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
                  plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
                Weak TRS Rules:
                  minus(x,0()) -> x
                  minus(s(x),s(y)) -> minus(x,y)
                  plus(0(),y) -> y
                  plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
                  plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
                  plus(s(x),y) -> s(plus(x,y))
                Signature:
                  {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
                Obligation:
                  Innermost
                  basic terms: {minus#,plus#,quot#}/{0,s}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  uargs(c_6) = {1}
                
                Following symbols are considered usable:
                  {minus#,plus#,quot#}
                TcT has computed the following interpretation:
                       p(0) = [1]         
                   p(minus) = [1]         
                    p(plus) = [1] x2 + [2]
                    p(quot) = [0]         
                       p(s) = [1] x1 + [4]
                  p(minus#) = [0]         
                   p(plus#) = [2] x1 + [8]
                   p(quot#) = [0]         
                     p(c_1) = [0]         
                     p(c_2) = [0]         
                     p(c_3) = [0]         
                     p(c_4) = [0]         
                     p(c_5) = [1]         
                     p(c_6) = [1] x1 + [3]
                     p(c_7) = [0]         
                     p(c_8) = [0]         
                
                Following rules are strictly oriented:
                plus#(s(x),y) = [2] x + [16]   
                              > [2] x + [11]   
                              = c_6(plus#(x,y))
                
                
                Following rules are (at-least) weakly oriented:
                  plus#(minus(x,s(0())) =  [10]                       
                     ,minus(y,s(s(z))))                               
                                        >= [0]                        
                                        =  c_4(plus#(minus(y,s(s(z))) 
                                                    ,minus(x,s(0()))))
                
                   plus#(plus(x,s(0())) =  [22]                       
                      ,plus(y,s(s(z))))                               
                                        >= [1]                        
                                        =  c_5(plus#(plus(y,s(s(z)))  
                                                    ,plus(x,s(0())))) 
                
          *** 1.1.1.1.1.1.2.1.1.1.1.2.2.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
                  plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
                  plus#(s(x),y) -> c_6(plus#(x,y))
                Weak TRS Rules:
                  minus(x,0()) -> x
                  minus(s(x),s(y)) -> minus(x,y)
                  plus(0(),y) -> y
                  plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
                  plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
                  plus(s(x),y) -> s(plus(x,y))
                Signature:
                  {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
                Obligation:
                  Innermost
                  basic terms: {minus#,plus#,quot#}/{0,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.2.1.1.1.1.2.2.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
                  plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
                  plus#(s(x),y) -> c_6(plus#(x,y))
                Weak TRS Rules:
                  minus(x,0()) -> x
                  minus(s(x),s(y)) -> minus(x,y)
                  plus(0(),y) -> y
                  plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
                  plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
                  plus(s(x),y) -> s(plus(x,y))
                Signature:
                  {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
                Obligation:
                  Innermost
                  basic terms: {minus#,plus#,quot#}/{0,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
                     -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
                     -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
                     -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1
                  
                  2:W:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
                     -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
                     -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
                     -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1
                  
                  3:W:plus#(s(x),y) -> c_6(plus#(x,y))
                     -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):3
                     -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):2
                     -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):1
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  1: plus#(minus(x,s(0()))           
                          ,minus(y,s(s(z)))) ->      
                       c_4(plus#(minus(y,s(s(z)))    
                                ,minus(x,s(0()))))   
                  3: plus#(s(x),y) -> c_6(plus#(x,y))
                  2: plus#(plus(x,s(0()))            
                          ,plus(y,s(s(z)))) ->       
                       c_5(plus#(plus(y,s(s(z)))     
                                ,plus(x,s(0()))))    
          *** 1.1.1.1.1.1.2.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  minus(x,0()) -> x
                  minus(s(x),s(y)) -> minus(x,y)
                  plus(0(),y) -> y
                  plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
                  plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
                  plus(s(x),y) -> s(plus(x,y))
                Signature:
                  {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
                Obligation:
                  Innermost
                  basic terms: {minus#,plus#,quot#}/{0,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
    *** 1.1.1.1.1.1.2.1.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
            plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
            plus#(s(x),y) -> c_6(plus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
               -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))):1
            
            2:W:plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0()))))
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2
            
            3:W:plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0()))))
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2
            
            4:W:plus#(s(x),y) -> c_6(plus#(x,y))
               -->_1 plus#(s(x),y) -> c_6(plus#(x,y)):4
               -->_1 plus#(plus(x,s(0())),plus(y,s(s(z)))) -> c_5(plus#(plus(y,s(s(z))),plus(x,s(0())))):3
               -->_1 plus#(minus(x,s(0())),minus(y,s(s(z)))) -> c_4(plus#(minus(y,s(s(z))),minus(x,s(0())))):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: plus#(minus(x,s(0()))           
                    ,minus(y,s(s(z)))) ->      
                 c_4(plus#(minus(y,s(s(z)))    
                          ,minus(x,s(0()))))   
            4: plus#(s(x),y) -> c_6(plus#(x,y))
            3: plus#(plus(x,s(0()))            
                    ,plus(y,s(s(z)))) ->       
                 c_5(plus#(plus(y,s(s(z)))     
                          ,plus(x,s(0()))))    
    *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            plus(0(),y) -> y
            plus(minus(x,s(0())),minus(y,s(s(z)))) -> plus(minus(y,s(s(z))),minus(x,s(0())))
            plus(plus(x,s(0())),plus(y,s(s(z)))) -> plus(plus(y,s(s(z))),plus(x,s(0())))
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          UsableRules
        Proof:
          We replace rewrite rules by usable rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
    *** 1.1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(s(x),s(y)) -> minus(x,y)
          Signature:
            {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
          Obligation:
            Innermost
            basic terms: {minus#,plus#,quot#}/{0,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: quot#(s(x),s(y)) ->          
                 c_8(quot#(minus(x,y),s(y)))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
            Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
            Obligation:
              Innermost
              basic terms: {minus#,plus#,quot#}/{0,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_8) = {1}
            
            Following symbols are considered usable:
              {minus,minus#,plus#,quot#}
            TcT has computed the following interpretation:
                   p(0) = [0]                  
               p(minus) = [1] x1 + [0]         
                p(plus) = [1] x1 + [2]         
                p(quot) = [2] x1 + [1] x2 + [0]
                   p(s) = [1] x1 + [4]         
              p(minus#) = [1] x2 + [0]         
               p(plus#) = [2] x1 + [1] x2 + [0]
               p(quot#) = [4] x1 + [2] x2 + [0]
                 p(c_1) = [1]                  
                 p(c_2) = [2]                  
                 p(c_3) = [8]                  
                 p(c_4) = [1]                  
                 p(c_5) = [0]                  
                 p(c_6) = [1]                  
                 p(c_7) = [1]                  
                 p(c_8) = [1] x1 + [3]         
            
            Following rules are strictly oriented:
            quot#(s(x),s(y)) = [4] x + [2] y + [24]       
                             > [4] x + [2] y + [11]       
                             = c_8(quot#(minus(x,y),s(y)))
            
            
            Following rules are (at-least) weakly oriented:
                minus(x,0()) =  [1] x + [0]
                             >= [1] x + [0]
                             =  x          
            
            minus(s(x),s(y)) =  [1] x + [4]
                             >= [1] x + [0]
                             =  minus(x,y) 
            
      *** 1.1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
            Weak TRS Rules:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
            Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
            Obligation:
              Innermost
              basic terms: {minus#,plus#,quot#}/{0,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.2.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
            Weak TRS Rules:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
            Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
            Obligation:
              Innermost
              basic terms: {minus#,plus#,quot#}/{0,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y)))
                 -->_1 quot#(s(x),s(y)) -> c_8(quot#(minus(x,y),s(y))):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: quot#(s(x),s(y)) ->          
                   c_8(quot#(minus(x,y),s(y)))
      *** 1.1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              minus(x,0()) -> x
              minus(s(x),s(y)) -> minus(x,y)
            Signature:
              {minus/2,plus/2,quot/2,minus#/2,plus#/2,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/1,c_6/1,c_7/0,c_8/1}
            Obligation:
              Innermost
              basic terms: {minus#,plus#,quot#}/{0,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).