(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0, y) → 0
f(s(x), y) → f(f(x, y), y)
Rewrite Strategy: INNERMOST
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0', y) → 0'
f(s(x), y) → f(f(x, y), y)
S is empty.
Rewrite Strategy: INNERMOST
(3) SlicingProof (LOWER BOUND(ID) transformation)
Sliced the following arguments:
f/1
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → 0'
f(s(x)) → f(f(x))
S is empty.
Rewrite Strategy: INNERMOST
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
Innermost TRS:
Rules:
f(0') → 0'
f(s(x)) → f(f(x))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(8) Obligation:
Innermost TRS:
Rules:
f(
0') →
0'f(
s(
x)) →
f(
f(
x))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
f
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':s2_0(
n4_0)) →
gen_0':s2_0(
0), rt ∈ Ω(1 + n4
0)
Induction Base:
f(gen_0':s2_0(0)) →RΩ(1)
0'
Induction Step:
f(gen_0':s2_0(+(n4_0, 1))) →RΩ(1)
f(f(gen_0':s2_0(n4_0))) →IH
f(gen_0':s2_0(0)) →RΩ(1)
0'
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
Innermost TRS:
Rules:
f(
0') →
0'f(
s(
x)) →
f(
f(
x))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
Innermost TRS:
Rules:
f(
0') →
0'f(
s(
x)) →
f(
f(
x))
Types:
f :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
f(gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s2_0(n4_0)) → gen_0':s2_0(0), rt ∈ Ω(1 + n40)
(16) BOUNDS(n^1, INF)