*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {minus/2,pred/1,quot/2} / {0/0,s/1}
      Obligation:
        Innermost
        basic terms: {minus,pred,quot}/{0,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        minus#(x,0()) -> c_1()
        minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_3()
        quot#(0(),s(y)) -> c_4()
        quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(x,0()) -> c_1()
        minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_3()
        quot#(0(),s(y)) -> c_4()
        quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
        quot(0(),s(y)) -> 0()
        quot(s(x),s(y)) -> s(quot(minus(x,y),s(y)))
      Signature:
        {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2}
      Obligation:
        Innermost
        basic terms: {minus#,pred#,quot#}/{0,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
        minus#(x,0()) -> c_1()
        minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_3()
        quot#(0(),s(y)) -> c_4()
        quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(x,0()) -> c_1()
        minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
        pred#(s(x)) -> c_3()
        quot#(0(),s(y)) -> c_4()
        quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2}
      Obligation:
        Innermost
        basic terms: {minus#,pred#,quot#}/{0,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,3,4}
      by application of
        Pre({1,3,4}) = {2,5}.
      Here rules are labelled as follows:
        1: minus#(x,0()) -> c_1()      
        2: minus#(x,s(y)) ->           
             c_2(pred#(minus(x,y))     
                ,minus#(x,y))          
        3: pred#(s(x)) -> c_3()        
        4: quot#(0(),s(y)) -> c_4()    
        5: quot#(s(x),s(y)) ->         
             c_5(quot#(minus(x,y),s(y))
                ,minus#(x,y))          
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
        quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        minus#(x,0()) -> c_1()
        pred#(s(x)) -> c_3()
        quot#(0(),s(y)) -> c_4()
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2}
      Obligation:
        Innermost
        basic terms: {minus#,pred#,quot#}/{0,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
           -->_1 pred#(s(x)) -> c_3():4
           -->_2 minus#(x,0()) -> c_1():3
           -->_2 minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y)):1
        
        2:S:quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
           -->_1 quot#(0(),s(y)) -> c_4():5
           -->_2 minus#(x,0()) -> c_1():3
           -->_1 quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y)):2
           -->_2 minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y)):1
        
        3:W:minus#(x,0()) -> c_1()
           
        
        4:W:pred#(s(x)) -> c_3()
           
        
        5:W:quot#(0(),s(y)) -> c_4()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        5: quot#(0(),s(y)) -> c_4()
        3: minus#(x,0()) -> c_1()  
        4: pred#(s(x)) -> c_3()    
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
        quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/2,c_3/0,c_4/0,c_5/2}
      Obligation:
        Innermost
        basic terms: {minus#,pred#,quot#}/{0,s}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y))
           -->_2 minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y)):1
        
        2:S:quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
           -->_1 quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y)):2
           -->_2 minus#(x,s(y)) -> c_2(pred#(minus(x,y)),minus#(x,y)):1
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        minus#(x,s(y)) -> c_2(minus#(x,y))
*** 1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        minus#(x,s(y)) -> c_2(minus#(x,y))
        quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        minus(x,0()) -> x
        minus(x,s(y)) -> pred(minus(x,y))
        pred(s(x)) -> x
      Signature:
        {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
      Obligation:
        Innermost
        basic terms: {minus#,pred#,quot#}/{0,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          minus#(x,s(y)) -> c_2(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
        Obligation:
          Innermost
          basic terms: {minus#,pred#,quot#}/{0,s}
      
      Problem (S)
        Strict DP Rules:
          quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          minus#(x,s(y)) -> c_2(minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
        Obligation:
          Innermost
          basic terms: {minus#,pred#,quot#}/{0,s}
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          minus#(x,s(y)) -> c_2(minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
        Obligation:
          Innermost
          basic terms: {minus#,pred#,quot#}/{0,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: minus#(x,s(y)) -> c_2(minus#(x  
                                         ,y))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            minus#(x,s(y)) -> c_2(minus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a polynomial interpretation of kind constructor-based(mixed(2)):
          The following argument positions are considered usable:
            uargs(c_2) = {1},
            uargs(c_5) = {1,2}
          
          Following symbols are considered usable:
            {minus,pred,minus#,pred#,quot#}
          TcT has computed the following interpretation:
                 p(0) = 1                               
             p(minus) = x1                              
              p(pred) = x1                              
              p(quot) = 1 + x2                          
                 p(s) = 1 + x1                          
            p(minus#) = 5*x1 + 2*x2                     
             p(pred#) = 2 + 2*x1^2                      
             p(quot#) = 2*x1*x2 + 4*x1^2 + 4*x2 + 2*x2^2
               p(c_1) = 0                               
               p(c_2) = x1                              
               p(c_3) = 1                               
               p(c_4) = 0                               
               p(c_5) = 1 + x1 + x2                     
          
          Following rules are strictly oriented:
          minus#(x,s(y)) = 2 + 5*x + 2*y   
                         > 5*x + 2*y       
                         = c_2(minus#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
          quot#(s(x),s(y)) =  12 + 10*x + 2*x*y + 4*x^2 + 10*y + 2*y^2
                           >= 7 + 7*x + 2*x*y + 4*x^2 + 10*y + 2*y^2  
                           =  c_5(quot#(minus(x,y),s(y))              
                                 ,minus#(x,y))                        
          
              minus(x,0()) =  x                                       
                           >= x                                       
                           =  x                                       
          
             minus(x,s(y)) =  x                                       
                           >= x                                       
                           =  pred(minus(x,y))                        
          
                pred(s(x)) =  1 + x                                   
                           >= x                                       
                           =  x                                       
          
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            minus#(x,s(y)) -> c_2(minus#(x,y))
            quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            minus#(x,s(y)) -> c_2(minus#(x,y))
            quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:minus#(x,s(y)) -> c_2(minus#(x,y))
               -->_1 minus#(x,s(y)) -> c_2(minus#(x,y)):1
            
            2:W:quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
               -->_1 quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y)):2
               -->_2 minus#(x,s(y)) -> c_2(minus#(x,y)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: quot#(s(x),s(y)) ->             
                 c_5(quot#(minus(x,y),s(y))    
                    ,minus#(x,y))              
            1: minus#(x,s(y)) -> c_2(minus#(x  
                                           ,y))
    *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.2 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          minus#(x,s(y)) -> c_2(minus#(x,y))
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
        Obligation:
          Innermost
          basic terms: {minus#,pred#,quot#}/{0,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_2 minus#(x,s(y)) -> c_2(minus#(x,y)):2
             -->_1 quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y)):1
          
          2:W:minus#(x,s(y)) -> c_2(minus#(x,y))
             -->_1 minus#(x,s(y)) -> c_2(minus#(x,y)):2
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          2: minus#(x,s(y)) -> c_2(minus#(x  
                                         ,y))
  *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/2}
        Obligation:
          Innermost
          basic terms: {minus#,pred#,quot#}/{0,s}
      Applied Processor:
        SimplifyRHS
      Proof:
        Consider the dependency graph
          1:S:quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y))
             -->_1 quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)),minus#(x,y)):1
          
        Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
          quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)))
  *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          minus(x,0()) -> x
          minus(x,s(y)) -> pred(minus(x,y))
          pred(s(x)) -> x
        Signature:
          {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1}
        Obligation:
          Innermost
          basic terms: {minus#,pred#,quot#}/{0,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: quot#(s(x),s(y)) ->          
               c_5(quot#(minus(x,y),s(y)))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.2.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_5) = {1}
          
          Following symbols are considered usable:
            {minus,pred,minus#,pred#,quot#}
          TcT has computed the following interpretation:
                 p(0) = [0]                  
             p(minus) = [1] x1 + [0]         
              p(pred) = [1] x1 + [0]         
              p(quot) = [2] x2 + [1]         
                 p(s) = [1] x1 + [2]         
            p(minus#) = [8] x1 + [2]         
             p(pred#) = [2] x1 + [1]         
             p(quot#) = [2] x1 + [4] x2 + [3]
               p(c_1) = [2]                  
               p(c_2) = [2]                  
               p(c_3) = [4]                  
               p(c_4) = [0]                  
               p(c_5) = [1] x1 + [0]         
          
          Following rules are strictly oriented:
          quot#(s(x),s(y)) = [2] x + [4] y + [15]       
                           > [2] x + [4] y + [11]       
                           = c_5(quot#(minus(x,y),s(y)))
          
          
          Following rules are (at-least) weakly oriented:
           minus(x,0()) =  [1] x + [0]     
                        >= [1] x + [0]     
                        =  x               
          
          minus(x,s(y)) =  [1] x + [0]     
                        >= [1] x + [0]     
                        =  pred(minus(x,y))
          
             pred(s(x)) =  [1] x + [2]     
                        >= [1] x + [0]     
                        =  x               
          
    *** 1.1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)))
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y)))
               -->_1 quot#(s(x),s(y)) -> c_5(quot#(minus(x,y),s(y))):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: quot#(s(x),s(y)) ->          
                 c_5(quot#(minus(x,y),s(y)))
    *** 1.1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            minus(x,0()) -> x
            minus(x,s(y)) -> pred(minus(x,y))
            pred(s(x)) -> x
          Signature:
            {minus/2,pred/1,quot/2,minus#/2,pred#/1,quot#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1}
          Obligation:
            Innermost
            basic terms: {minus#,pred#,quot#}/{0,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).