*** 1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) pred(cons(s(x),nil())) -> cons(x,nil()) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(cons(x,nil())) -> cons(x,nil()) sum(plus(cons(0(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) Weak DP Rules: Weak TRS Rules: Signature: {app/2,plus/2,pred/1,sum/1} / {0/0,cons/2,nil/0,s/1} Obligation: Innermost basic terms: {app,plus,pred,sum}/{0,cons,nil,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(app(l,cons(x,cons(y,k)))) -> c_7(sum#(app(l,sum(cons(x,cons(y,k))))),app#(l,sum(cons(x,cons(y,k)))),sum#(cons(x,cons(y,k)))) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() sum#(plus(cons(0(),x),cons(y,l))) -> c_10(pred#(sum(cons(s(x),cons(y,l)))),sum#(cons(s(x),cons(y,l)))) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(app(l,cons(x,cons(y,k)))) -> c_7(sum#(app(l,sum(cons(x,cons(y,k))))),app#(l,sum(cons(x,cons(y,k)))),sum#(cons(x,cons(y,k)))) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() sum#(plus(cons(0(),x),cons(y,l))) -> c_10(pred#(sum(cons(s(x),cons(y,l)))),sum#(cons(s(x),cons(y,l)))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(l,nil()) -> l app(cons(x,l),k) -> cons(x,app(l,k)) app(nil(),k) -> k plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) pred(cons(s(x),nil())) -> cons(x,nil()) sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k))))) sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l)) sum(cons(x,nil())) -> cons(x,nil()) sum(plus(cons(0(),x),cons(y,l))) -> pred(sum(cons(s(x),cons(y,l)))) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() *** 1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(l,nil()) -> c_1() app#(cons(x,l),k) -> c_2(app#(l,k)) app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() plus#(s(x),y) -> c_5(plus#(x,y)) pred#(cons(s(x),nil())) -> c_6() sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) sum#(cons(x,nil())) -> c_9() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,3,4,6,8} by application of Pre({1,3,4,6,8}) = {2,5,7}. Here rules are labelled as follows: 1: app#(l,nil()) -> c_1() 2: app#(cons(x,l),k) -> c_2(app#(l ,k)) 3: app#(nil(),k) -> c_3() 4: plus#(0(),y) -> c_4() 5: plus#(s(x),y) -> c_5(plus#(x,y)) 6: pred#(cons(s(x),nil())) -> c_6() 7: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)) ,plus#(x,y)) 8: sum#(cons(x,nil())) -> c_9() *** 1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: app#(l,nil()) -> c_1() app#(nil(),k) -> c_3() plus#(0(),y) -> c_4() pred#(cons(s(x),nil())) -> c_6() sum#(cons(x,nil())) -> c_9() Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(nil(),k) -> c_3():5 -->_1 app#(l,nil()) -> c_1():4 -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1 2:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(0(),y) -> c_4():6 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,nil())) -> c_9():8 -->_2 plus#(0(),y) -> c_4():6 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):3 -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2 4:W:app#(l,nil()) -> c_1() 5:W:app#(nil(),k) -> c_3() 6:W:plus#(0(),y) -> c_4() 7:W:pred#(cons(s(x),nil())) -> c_6() 8:W:sum#(cons(x,nil())) -> c_9() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 7: pred#(cons(s(x),nil())) -> c_6() 8: sum#(cons(x,nil())) -> c_9() 6: plus#(0(),y) -> c_4() 4: app#(l,nil()) -> c_1() 5: app#(nil(),k) -> c_3() *** 1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Problem (S) Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 3:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)) ,plus#(x,y)) 2: plus#(s(x),y) -> c_5(plus#(x,y)) *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app#(cons(x,l),k) -> c_2(app#(l,k)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: app#(cons(x,l),k) -> c_2(app#(l ,k)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_2) = {1} Following symbols are considered usable: {app#,plus#,pred#,sum#} TcT has computed the following interpretation: p(0) = [0] p(app) = [0] p(cons) = [1] x1 + [1] x2 + [8] p(nil) = [0] p(plus) = [0] p(pred) = [0] p(s) = [1] x1 + [0] p(sum) = [0] p(app#) = [1] x1 + [0] p(plus#) = [0] p(pred#) = [1] x1 + [0] p(sum#) = [0] p(c_1) = [0] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [4] x1 + [0] p(c_6) = [0] p(c_7) = [4] x1 + [0] p(c_8) = [2] p(c_9) = [0] p(c_10) = [1] x2 + [1] Following rules are strictly oriented: app#(cons(x,l),k) = [1] l + [1] x + [8] > [1] l + [0] = c_2(app#(l,k)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Weak TRS Rules: Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Weak TRS Rules: Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: app#(cons(x,l),k) -> c_2(app#(l ,k)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: app#(cons(x,l),k) -> c_2(app#(l,k)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):2 -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1 3:W:app#(cons(x,l),k) -> c_2(app#(l,k)) -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: app#(cons(x,l),k) -> c_2(app#(l ,k)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Strict TRS Rules: Weak DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Problem (S) Strict DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Strict TRS Rules: Weak DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(s(x),y) -> c_5(plus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Strict TRS Rules: Weak DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_5) = {1}, uargs(c_8) = {1,2} Following symbols are considered usable: {plus,app#,plus#,pred#,sum#} TcT has computed the following interpretation: p(0) = 1 p(app) = 1 + 4*x1^2 + x2^2 p(cons) = 1 + x1 + x2 p(nil) = 0 p(plus) = x1 + x2 p(pred) = 1 p(s) = 1 + x1 p(sum) = x1^2 p(app#) = 1 + x1 + 2*x1^2 + 2*x2 + x2^2 p(plus#) = x1 + x2 p(pred#) = x1^2 p(sum#) = 1 + x1 + x1^2 p(c_1) = 0 p(c_2) = 1 + x1 p(c_3) = 0 p(c_4) = 0 p(c_5) = x1 p(c_6) = 1 p(c_7) = x2 p(c_8) = x1 + x2 p(c_9) = 1 p(c_10) = 1 + x2 Following rules are strictly oriented: plus#(s(x),y) = 1 + x + y > x + y = c_5(plus#(x,y)) Following rules are (at-least) weakly oriented: sum#(cons(x,cons(y,l))) = 7 + 5*l + 2*l*x + 2*l*y + l^2 + 5*x + 2*x*y + x^2 + 5*y + y^2 >= 3 + 3*l + 2*l*x + 2*l*y + l^2 + 4*x + 2*x*y + x^2 + 4*y + y^2 = c_8(sum#(cons(plus(x,y),l)) ,plus#(x,y)) plus(0(),y) = 1 + y >= y = y plus(s(x),y) = 1 + x + y >= 1 + x + y = s(plus(x,y)) *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1 2:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):2 -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)) ,plus#(x,y)) 1: plus#(s(x),y) -> c_5(plus#(x,y)) *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(s(x),y) -> c_5(plus#(x,y)) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2 -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):1 2:W:plus#(s(x),y) -> c_5(plus#(x,y)) -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: plus#(s(x),y) -> c_5(plus#(x,y)) *** 1.1.1.1.1.2.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/2,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l)),plus#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) *** 1.1.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_8) = {1} Following symbols are considered usable: {app#,plus#,pred#,sum#} TcT has computed the following interpretation: p(0) = [3] p(app) = [2] x1 + [1] p(cons) = [1] x2 + [2] p(nil) = [2] p(plus) = [8] x1 + [0] p(pred) = [1] x1 + [2] p(s) = [1] x1 + [0] p(sum) = [1] x1 + [0] p(app#) = [2] x2 + [0] p(plus#) = [1] x1 + [1] x2 + [4] p(pred#) = [1] x1 + [1] p(sum#) = [4] x1 + [0] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [2] p(c_4) = [1] p(c_5) = [1] x1 + [1] p(c_6) = [0] p(c_7) = [1] x1 + [1] x2 + [1] x3 + [1] p(c_8) = [1] x1 + [7] p(c_9) = [0] p(c_10) = [8] x2 + [8] Following rules are strictly oriented: sum#(cons(x,cons(y,l))) = [4] l + [16] > [4] l + [15] = c_8(sum#(cons(plus(x,y),l))) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) -->_1 sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: sum#(cons(x,cons(y,l))) -> c_8(sum#(cons(plus(x,y),l))) *** 1.1.1.1.1.2.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(0(),y) -> y plus(s(x),y) -> s(plus(x,y)) Signature: {app/2,plus/2,pred/1,sum/1,app#/2,plus#/2,pred#/1,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/0,c_7/3,c_8/1,c_9/0,c_10/2} Obligation: Innermost basic terms: {app#,plus#,pred#,sum#}/{0,cons,nil,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).