*** 1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
app(l,nil()) -> l
app(cons(x,l),k) -> cons(x,app(l,k))
app(nil(),k) -> k
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
sum(cons(x,nil())) -> cons(x,nil())
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,plus/2,sum/1} / {0/0,cons/2,nil/0,s/1}
Obligation:
Innermost
basic terms: {app,plus,sum}/{0,cons,nil,s}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
app#(l,nil()) -> c_1()
app#(cons(x,l),k) -> c_2(app#(l,k))
app#(nil(),k) -> c_3()
plus#(0(),y) -> c_4()
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(app(l,cons(x,cons(y,k)))) -> c_6(sum#(app(l,sum(cons(x,cons(y,k))))),app#(l,sum(cons(x,cons(y,k)))),sum#(cons(x,cons(y,k))))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
sum#(cons(x,nil())) -> c_8()
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(l,nil()) -> c_1()
app#(cons(x,l),k) -> c_2(app#(l,k))
app#(nil(),k) -> c_3()
plus#(0(),y) -> c_4()
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(app(l,cons(x,cons(y,k)))) -> c_6(sum#(app(l,sum(cons(x,cons(y,k))))),app#(l,sum(cons(x,cons(y,k)))),sum#(cons(x,cons(y,k))))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
sum#(cons(x,nil())) -> c_8()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
app(l,nil()) -> l
app(cons(x,l),k) -> cons(x,app(l,k))
app(nil(),k) -> k
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
sum(cons(x,nil())) -> cons(x,nil())
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
app#(l,nil()) -> c_1()
app#(cons(x,l),k) -> c_2(app#(l,k))
app#(nil(),k) -> c_3()
plus#(0(),y) -> c_4()
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
sum#(cons(x,nil())) -> c_8()
*** 1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(l,nil()) -> c_1()
app#(cons(x,l),k) -> c_2(app#(l,k))
app#(nil(),k) -> c_3()
plus#(0(),y) -> c_4()
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
sum#(cons(x,nil())) -> c_8()
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,3,4,7}
by application of
Pre({1,3,4,7}) = {2,5,6}.
Here rules are labelled as follows:
1: app#(l,nil()) -> c_1()
2: app#(cons(x,l),k) -> c_2(app#(l
,k))
3: app#(nil(),k) -> c_3()
4: plus#(0(),y) -> c_4()
5: plus#(s(x),y) -> c_5(plus#(x,y))
6: sum#(cons(x,cons(y,l))) ->
c_7(sum#(cons(plus(x,y),l))
,plus#(x,y))
7: sum#(cons(x,nil())) -> c_8()
*** 1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
app#(l,nil()) -> c_1()
app#(nil(),k) -> c_3()
plus#(0(),y) -> c_4()
sum#(cons(x,nil())) -> c_8()
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:app#(cons(x,l),k) -> c_2(app#(l,k))
-->_1 app#(nil(),k) -> c_3():5
-->_1 app#(l,nil()) -> c_1():4
-->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1
2:S:plus#(s(x),y) -> c_5(plus#(x,y))
-->_1 plus#(0(),y) -> c_4():6
-->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
3:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
-->_1 sum#(cons(x,nil())) -> c_8():7
-->_2 plus#(0(),y) -> c_4():6
-->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):3
-->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2
4:W:app#(l,nil()) -> c_1()
5:W:app#(nil(),k) -> c_3()
6:W:plus#(0(),y) -> c_4()
7:W:sum#(cons(x,nil())) -> c_8()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
7: sum#(cons(x,nil())) -> c_8()
6: plus#(0(),y) -> c_4()
4: app#(l,nil()) -> c_1()
5: app#(nil(),k) -> c_3()
*** 1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Strict TRS Rules:
Weak DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Problem (S)
Strict DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
*** 1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Strict TRS Rules:
Weak DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:app#(cons(x,l),k) -> c_2(app#(l,k))
-->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1
2:W:plus#(s(x),y) -> c_5(plus#(x,y))
-->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
3:W:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
-->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2
-->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):3
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: sum#(cons(x,cons(y,l))) ->
c_7(sum#(cons(plus(x,y),l))
,plus#(x,y))
2: plus#(s(x),y) -> c_5(plus#(x,y))
*** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: app#(cons(x,l),k) -> c_2(app#(l
,k))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_2) = {1}
Following symbols are considered usable:
{app#,plus#,sum#}
TcT has computed the following interpretation:
p(0) = [0]
p(app) = [0]
p(cons) = [1] x1 + [1] x2 + [8]
p(nil) = [0]
p(plus) = [1] x1 + [1] x2 + [0]
p(s) = [1] x1 + [0]
p(sum) = [1] x1 + [0]
p(app#) = [2] x1 + [6] x2 + [0]
p(plus#) = [1] x1 + [2] x2 + [0]
p(sum#) = [1] x1 + [0]
p(c_1) = [0]
p(c_2) = [1] x1 + [15]
p(c_3) = [0]
p(c_4) = [2]
p(c_5) = [2] x1 + [1]
p(c_6) = [8] x1 + [0]
p(c_7) = [1] x1 + [1] x2 + [2]
p(c_8) = [1]
Following rules are strictly oriented:
app#(cons(x,l),k) = [6] k + [2] l + [2] x + [16]
> [6] k + [2] l + [15]
= c_2(app#(l,k))
Following rules are (at-least) weakly oriented:
*** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Weak TRS Rules:
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Weak TRS Rules:
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:app#(cons(x,l),k) -> c_2(app#(l,k))
-->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: app#(cons(x,l),k) -> c_2(app#(l
,k))
*** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.2 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
app#(cons(x,l),k) -> c_2(app#(l,k))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:plus#(s(x),y) -> c_5(plus#(x,y))
-->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
2:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
-->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):2
-->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1
3:W:app#(cons(x,l),k) -> c_2(app#(l,k))
-->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):3
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: app#(cons(x,l),k) -> c_2(app#(l
,k))
*** 1.1.1.1.1.2.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Problem (S)
Strict DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
*** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: plus#(s(x),y) -> c_5(plus#(x,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_5) = {1},
uargs(c_7) = {1,2}
Following symbols are considered usable:
{plus,app#,plus#,sum#}
TcT has computed the following interpretation:
p(0) = 1
p(app) = x1^2 + x2 + 4*x2^2
p(cons) = 1 + x1 + x2
p(nil) = 0
p(plus) = x1 + x2
p(s) = 1 + x1
p(sum) = 0
p(app#) = x1
p(plus#) = 2 + 4*x1
p(sum#) = 2*x1^2
p(c_1) = 1
p(c_2) = 1 + x1
p(c_3) = 1
p(c_4) = 0
p(c_5) = x1
p(c_6) = x1
p(c_7) = x1 + x2
p(c_8) = 1
Following rules are strictly oriented:
plus#(s(x),y) = 6 + 4*x
> 2 + 4*x
= c_5(plus#(x,y))
Following rules are (at-least) weakly oriented:
sum#(cons(x,cons(y,l))) = 8 + 8*l + 4*l*x + 4*l*y + 2*l^2 + 8*x + 4*x*y + 2*x^2 + 8*y + 2*y^2
>= 4 + 4*l + 4*l*x + 4*l*y + 2*l^2 + 8*x + 4*x*y + 2*x^2 + 4*y + 2*y^2
= c_7(sum#(cons(plus(x,y),l))
,plus#(x,y))
plus(0(),y) = 1 + y
>= y
= y
plus(s(x),y) = 1 + x + y
>= 1 + x + y
= s(plus(x,y))
*** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:plus#(s(x),y) -> c_5(plus#(x,y))
-->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
2:W:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
-->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):2
-->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: sum#(cons(x,cons(y,l))) ->
c_7(sum#(cons(plus(x,y),l))
,plus#(x,y))
1: plus#(s(x),y) -> c_5(plus#(x,y))
*** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.2.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(s(x),y) -> c_5(plus#(x,y))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
-->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2
-->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):1
2:W:plus#(s(x),y) -> c_5(plus#(x,y))
-->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
2: plus#(s(x),y) -> c_5(plus#(x,y))
*** 1.1.1.1.1.2.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
-->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
*** 1.1.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: sum#(cons(x,cons(y,l))) ->
c_7(sum#(cons(plus(x,y),l)))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_7) = {1}
Following symbols are considered usable:
{plus,app#,plus#,sum#}
TcT has computed the following interpretation:
p(0) = [0]
p(app) = [8]
p(cons) = [1] x1 + [1] x2 + [1]
p(nil) = [1]
p(plus) = [1] x2 + [0]
p(s) = [1] x1 + [0]
p(sum) = [0]
p(app#) = [1] x1 + [4] x2 + [8]
p(plus#) = [1] x1 + [2] x2 + [1]
p(sum#) = [4] x1 + [0]
p(c_1) = [1]
p(c_2) = [1]
p(c_3) = [8]
p(c_4) = [1]
p(c_5) = [1] x1 + [2]
p(c_6) = [2] x1 + [0]
p(c_7) = [1] x1 + [2]
p(c_8) = [4]
Following rules are strictly oriented:
sum#(cons(x,cons(y,l))) = [4] l + [4] x + [4] y + [8]
> [4] l + [4] y + [6]
= c_7(sum#(cons(plus(x,y),l)))
Following rules are (at-least) weakly oriented:
plus(0(),y) = [1] y + [0]
>= [1] y + [0]
= y
plus(s(x),y) = [1] y + [0]
>= [1] y + [0]
= s(plus(x,y))
*** 1.1.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.2.1.2.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
-->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l))):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: sum#(cons(x,cons(y,l))) ->
c_7(sum#(cons(plus(x,y),l)))
*** 1.1.1.1.1.2.1.2.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(0(),y) -> y
plus(s(x),y) -> s(plus(x,y))
Signature:
{app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
Obligation:
Innermost
basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).