*** 1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        app(l,nil()) -> l
        app(cons(x,l),k) -> cons(x,app(l,k))
        app(nil(),k) -> k
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
        sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
        sum(cons(x,nil())) -> cons(x,nil())
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {app/2,plus/2,sum/1} / {0/0,cons/2,nil/0,s/1}
      Obligation:
        Innermost
        basic terms: {app,plus,sum}/{0,cons,nil,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        app#(l,nil()) -> c_1()
        app#(cons(x,l),k) -> c_2(app#(l,k))
        app#(nil(),k) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        sum#(app(l,cons(x,cons(y,k)))) -> c_6(sum#(app(l,sum(cons(x,cons(y,k))))),app#(l,sum(cons(x,cons(y,k)))),sum#(cons(x,cons(y,k))))
        sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        sum#(cons(x,nil())) -> c_8()
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        app#(l,nil()) -> c_1()
        app#(cons(x,l),k) -> c_2(app#(l,k))
        app#(nil(),k) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        sum#(app(l,cons(x,cons(y,k)))) -> c_6(sum#(app(l,sum(cons(x,cons(y,k))))),app#(l,sum(cons(x,cons(y,k)))),sum#(cons(x,cons(y,k))))
        sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        sum#(cons(x,nil())) -> c_8()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        app(l,nil()) -> l
        app(cons(x,l),k) -> cons(x,app(l,k))
        app(nil(),k) -> k
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        sum(app(l,cons(x,cons(y,k)))) -> sum(app(l,sum(cons(x,cons(y,k)))))
        sum(cons(x,cons(y,l))) -> sum(cons(plus(x,y),l))
        sum(cons(x,nil())) -> cons(x,nil())
      Signature:
        {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
      Obligation:
        Innermost
        basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
        app#(l,nil()) -> c_1()
        app#(cons(x,l),k) -> c_2(app#(l,k))
        app#(nil(),k) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        sum#(cons(x,nil())) -> c_8()
*** 1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        app#(l,nil()) -> c_1()
        app#(cons(x,l),k) -> c_2(app#(l,k))
        app#(nil(),k) -> c_3()
        plus#(0(),y) -> c_4()
        plus#(s(x),y) -> c_5(plus#(x,y))
        sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        sum#(cons(x,nil())) -> c_8()
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
      Signature:
        {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
      Obligation:
        Innermost
        basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,3,4,7}
      by application of
        Pre({1,3,4,7}) = {2,5,6}.
      Here rules are labelled as follows:
        1: app#(l,nil()) -> c_1()           
        2: app#(cons(x,l),k) -> c_2(app#(l  
                                        ,k))
        3: app#(nil(),k) -> c_3()           
        4: plus#(0(),y) -> c_4()            
        5: plus#(s(x),y) -> c_5(plus#(x,y)) 
        6: sum#(cons(x,cons(y,l))) ->       
             c_7(sum#(cons(plus(x,y),l))    
                ,plus#(x,y))                
        7: sum#(cons(x,nil())) -> c_8()     
*** 1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        app#(cons(x,l),k) -> c_2(app#(l,k))
        plus#(s(x),y) -> c_5(plus#(x,y))
        sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        app#(l,nil()) -> c_1()
        app#(nil(),k) -> c_3()
        plus#(0(),y) -> c_4()
        sum#(cons(x,nil())) -> c_8()
      Weak TRS Rules:
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
      Signature:
        {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
      Obligation:
        Innermost
        basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:app#(cons(x,l),k) -> c_2(app#(l,k))
           -->_1 app#(nil(),k) -> c_3():5
           -->_1 app#(l,nil()) -> c_1():4
           -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1
        
        2:S:plus#(s(x),y) -> c_5(plus#(x,y))
           -->_1 plus#(0(),y) -> c_4():6
           -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
        
        3:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
           -->_1 sum#(cons(x,nil())) -> c_8():7
           -->_2 plus#(0(),y) -> c_4():6
           -->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):3
           -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2
        
        4:W:app#(l,nil()) -> c_1()
           
        
        5:W:app#(nil(),k) -> c_3()
           
        
        6:W:plus#(0(),y) -> c_4()
           
        
        7:W:sum#(cons(x,nil())) -> c_8()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        7: sum#(cons(x,nil())) -> c_8()
        6: plus#(0(),y) -> c_4()       
        4: app#(l,nil()) -> c_1()      
        5: app#(nil(),k) -> c_3()      
*** 1.1.1.1.1 Progress [(?,O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        app#(cons(x,l),k) -> c_2(app#(l,k))
        plus#(s(x),y) -> c_5(plus#(x,y))
        sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        plus(0(),y) -> y
        plus(s(x),y) -> s(plus(x,y))
      Signature:
        {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
      Obligation:
        Innermost
        basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
    Applied Processor:
      Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
    Proof:
      We analyse the complexity of following sub-problems (R) and (S).
      Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
      
      Problem (R)
        Strict DP Rules:
          app#(cons(x,l),k) -> c_2(app#(l,k))
        Strict TRS Rules:
          
        Weak DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        Weak TRS Rules:
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
        Obligation:
          Innermost
          basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
      
      Problem (S)
        Strict DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          app#(cons(x,l),k) -> c_2(app#(l,k))
        Weak TRS Rules:
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
        Obligation:
          Innermost
          basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
  *** 1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          app#(cons(x,l),k) -> c_2(app#(l,k))
        Strict TRS Rules:
          
        Weak DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        Weak TRS Rules:
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
        Obligation:
          Innermost
          basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:app#(cons(x,l),k) -> c_2(app#(l,k))
             -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1
          
          2:W:plus#(s(x),y) -> c_5(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
          
          3:W:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
             -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2
             -->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: sum#(cons(x,cons(y,l))) ->      
               c_7(sum#(cons(plus(x,y),l))   
                  ,plus#(x,y))               
          2: plus#(s(x),y) -> c_5(plus#(x,y))
  *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          app#(cons(x,l),k) -> c_2(app#(l,k))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
        Obligation:
          Innermost
          basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
      Applied Processor:
        UsableRules
      Proof:
        We replace rewrite rules by usable rules:
          app#(cons(x,l),k) -> c_2(app#(l,k))
  *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          app#(cons(x,l),k) -> c_2(app#(l,k))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
        Obligation:
          Innermost
          basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: app#(cons(x,l),k) -> c_2(app#(l  
                                          ,k))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            app#(cons(x,l),k) -> c_2(app#(l,k))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_2) = {1}
          
          Following symbols are considered usable:
            {app#,plus#,sum#}
          TcT has computed the following interpretation:
                p(0) = [0]                  
              p(app) = [0]                  
             p(cons) = [1] x1 + [1] x2 + [8]
              p(nil) = [0]                  
             p(plus) = [1] x1 + [1] x2 + [0]
                p(s) = [1] x1 + [0]         
              p(sum) = [1] x1 + [0]         
             p(app#) = [2] x1 + [6] x2 + [0]
            p(plus#) = [1] x1 + [2] x2 + [0]
             p(sum#) = [1] x1 + [0]         
              p(c_1) = [0]                  
              p(c_2) = [1] x1 + [15]        
              p(c_3) = [0]                  
              p(c_4) = [2]                  
              p(c_5) = [2] x1 + [1]         
              p(c_6) = [8] x1 + [0]         
              p(c_7) = [1] x1 + [1] x2 + [2]
              p(c_8) = [1]                  
          
          Following rules are strictly oriented:
          app#(cons(x,l),k) = [6] k + [2] l + [2] x + [16]
                            > [6] k + [2] l + [15]        
                            = c_2(app#(l,k))              
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            app#(cons(x,l),k) -> c_2(app#(l,k))
          Weak TRS Rules:
            
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            app#(cons(x,l),k) -> c_2(app#(l,k))
          Weak TRS Rules:
            
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:app#(cons(x,l),k) -> c_2(app#(l,k))
               -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: app#(cons(x,l),k) -> c_2(app#(l  
                                            ,k))
    *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.2 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          app#(cons(x,l),k) -> c_2(app#(l,k))
        Weak TRS Rules:
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
        Obligation:
          Innermost
          basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
      Applied Processor:
        RemoveWeakSuffixes
      Proof:
        Consider the dependency graph
          1:S:plus#(s(x),y) -> c_5(plus#(x,y))
             -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
          
          2:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
             -->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):2
             -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1
          
          3:W:app#(cons(x,l),k) -> c_2(app#(l,k))
             -->_1 app#(cons(x,l),k) -> c_2(app#(l,k)):3
          
        The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
          3: app#(cons(x,l),k) -> c_2(app#(l  
                                          ,k))
  *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))]  ***
      Considered Problem:
        Strict DP Rules:
          plus#(s(x),y) -> c_5(plus#(x,y))
          sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          plus(0(),y) -> y
          plus(s(x),y) -> s(plus(x,y))
        Signature:
          {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
        Obligation:
          Innermost
          basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
      Applied Processor:
        Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
      Proof:
        We analyse the complexity of following sub-problems (R) and (S).
        Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
        
        Problem (R)
          Strict DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
          Weak TRS Rules:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        
        Problem (S)
          Strict DP Rules:
            sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Weak TRS Rules:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
    *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))]  ***
        Considered Problem:
          Strict DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
          Weak TRS Rules:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: plus#(s(x),y) -> c_5(plus#(x,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              plus#(s(x),y) -> c_5(plus#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a polynomial interpretation of kind constructor-based(mixed(2)):
            The following argument positions are considered usable:
              uargs(c_5) = {1},
              uargs(c_7) = {1,2}
            
            Following symbols are considered usable:
              {plus,app#,plus#,sum#}
            TcT has computed the following interpretation:
                  p(0) = 1                 
                p(app) = x1^2 + x2 + 4*x2^2
               p(cons) = 1 + x1 + x2       
                p(nil) = 0                 
               p(plus) = x1 + x2           
                  p(s) = 1 + x1            
                p(sum) = 0                 
               p(app#) = x1                
              p(plus#) = 2 + 4*x1          
               p(sum#) = 2*x1^2            
                p(c_1) = 1                 
                p(c_2) = 1 + x1            
                p(c_3) = 1                 
                p(c_4) = 0                 
                p(c_5) = x1                
                p(c_6) = x1                
                p(c_7) = x1 + x2           
                p(c_8) = 1                 
            
            Following rules are strictly oriented:
            plus#(s(x),y) = 6 + 4*x        
                          > 2 + 4*x        
                          = c_5(plus#(x,y))
            
            
            Following rules are (at-least) weakly oriented:
            sum#(cons(x,cons(y,l))) =  8 + 8*l + 4*l*x + 4*l*y + 2*l^2 + 8*x + 4*x*y + 2*x^2 + 8*y + 2*y^2
                                    >= 4 + 4*l + 4*l*x + 4*l*y + 2*l^2 + 8*x + 4*x*y + 2*x^2 + 4*y + 2*y^2
                                    =  c_7(sum#(cons(plus(x,y),l))                                        
                                          ,plus#(x,y))                                                    
            
                        plus(0(),y) =  1 + y                                                              
                                    >= y                                                                  
                                    =  y                                                                  
            
                       plus(s(x),y) =  1 + x + y                                                          
                                    >= 1 + x + y                                                          
                                    =  s(plus(x,y))                                                       
            
      *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(s(x),y) -> c_5(plus#(x,y))
              sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.2.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              plus#(s(x),y) -> c_5(plus#(x,y))
              sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:plus#(s(x),y) -> c_5(plus#(x,y))
                 -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):1
              
              2:W:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
                 -->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):2
                 -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              2: sum#(cons(x,cons(y,l))) ->      
                   c_7(sum#(cons(plus(x,y),l))   
                      ,plus#(x,y))               
              1: plus#(s(x),y) -> c_5(plus#(x,y))
      *** 1.1.1.1.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).
      
    *** 1.1.1.1.1.2.1.2 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            plus#(s(x),y) -> c_5(plus#(x,y))
          Weak TRS Rules:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
               -->_2 plus#(s(x),y) -> c_5(plus#(x,y)):2
               -->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):1
            
            2:W:plus#(s(x),y) -> c_5(plus#(x,y))
               -->_1 plus#(s(x),y) -> c_5(plus#(x,y)):2
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            2: plus#(s(x),y) -> c_5(plus#(x,y))
    *** 1.1.1.1.1.2.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/2,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          SimplifyRHS
        Proof:
          Consider the dependency graph
            1:S:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y))
               -->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)),plus#(x,y)):1
            
          Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
            sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
    *** 1.1.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            plus(0(),y) -> y
            plus(s(x),y) -> s(plus(x,y))
          Signature:
            {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
          Obligation:
            Innermost
            basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            1: sum#(cons(x,cons(y,l))) ->    
                 c_7(sum#(cons(plus(x,y),l)))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_7) = {1}
            
            Following symbols are considered usable:
              {plus,app#,plus#,sum#}
            TcT has computed the following interpretation:
                  p(0) = [0]                  
                p(app) = [8]                  
               p(cons) = [1] x1 + [1] x2 + [1]
                p(nil) = [1]                  
               p(plus) = [1] x2 + [0]         
                  p(s) = [1] x1 + [0]         
                p(sum) = [0]                  
               p(app#) = [1] x1 + [4] x2 + [8]
              p(plus#) = [1] x1 + [2] x2 + [1]
               p(sum#) = [4] x1 + [0]         
                p(c_1) = [1]                  
                p(c_2) = [1]                  
                p(c_3) = [8]                  
                p(c_4) = [1]                  
                p(c_5) = [1] x1 + [2]         
                p(c_6) = [2] x1 + [0]         
                p(c_7) = [1] x1 + [2]         
                p(c_8) = [4]                  
            
            Following rules are strictly oriented:
            sum#(cons(x,cons(y,l))) = [4] l + [4] x + [4] y + [8] 
                                    > [4] l + [4] y + [6]         
                                    = c_7(sum#(cons(plus(x,y),l)))
            
            
            Following rules are (at-least) weakly oriented:
             plus(0(),y) =  [1] y + [0] 
                         >= [1] y + [0] 
                         =  y           
            
            plus(s(x),y) =  [1] y + [0] 
                         >= [1] y + [0] 
                         =  s(plus(x,y))
            
      *** 1.1.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.2.1.2.1.1.2 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:W:sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l)))
                 -->_1 sum#(cons(x,cons(y,l))) -> c_7(sum#(cons(plus(x,y),l))):1
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              1: sum#(cons(x,cons(y,l))) ->    
                   c_7(sum#(cons(plus(x,y),l)))
      *** 1.1.1.1.1.2.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              
            Strict TRS Rules:
              
            Weak DP Rules:
              
            Weak TRS Rules:
              plus(0(),y) -> y
              plus(s(x),y) -> s(plus(x,y))
            Signature:
              {app/2,plus/2,sum/1,app#/2,plus#/2,sum#/1} / {0/0,cons/2,nil/0,s/1,c_1/0,c_2/1,c_3/0,c_4/0,c_5/1,c_6/3,c_7/1,c_8/0}
            Obligation:
              Innermost
              basic terms: {app#,plus#,sum#}/{0,cons,nil,s}
          Applied Processor:
            EmptyProcessor
          Proof:
            The problem is already closed. The intended complexity is O(1).