(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
app(nil, k) → k
app(l, nil) → l
app(cons(x, l), k) → cons(x, app(l, k))
sum(cons(x, nil)) → cons(x, nil)
sum(cons(x, cons(y, l))) → sum(cons(plus(x, y), l))
sum(app(l, cons(x, cons(y, k)))) → sum(app(l, sum(cons(x, cons(y, k)))))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
Rewrite Strategy: INNERMOST
(1) CpxTrsToCdtProof (BOTH BOUNDS(ID, ID) transformation)
Converted Cpx (relative) TRS to CDT
(2) Obligation:
Complexity Dependency Tuples Problem
Rules:
app(nil, z0) → z0
app(z0, nil) → z0
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
sum(cons(z0, nil)) → cons(z0, nil)
sum(cons(z0, cons(z1, z2))) → sum(cons(plus(z0, z1), z2))
sum(app(z0, cons(z1, cons(z2, z3)))) → sum(app(z0, sum(cons(z1, cons(z2, z3)))))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
Tuples:
APP(nil, z0) → c
APP(z0, nil) → c1
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, nil)) → c3
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
SUM(app(z0, cons(z1, cons(z2, z3)))) → c5(SUM(app(z0, sum(cons(z1, cons(z2, z3))))), APP(z0, sum(cons(z1, cons(z2, z3)))), SUM(cons(z1, cons(z2, z3))))
PLUS(0, z0) → c6
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
S tuples:
APP(nil, z0) → c
APP(z0, nil) → c1
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, nil)) → c3
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
SUM(app(z0, cons(z1, cons(z2, z3)))) → c5(SUM(app(z0, sum(cons(z1, cons(z2, z3))))), APP(z0, sum(cons(z1, cons(z2, z3)))), SUM(cons(z1, cons(z2, z3))))
PLUS(0, z0) → c6
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
K tuples:none
Defined Rule Symbols:
app, sum, plus
Defined Pair Symbols:
APP, SUM, PLUS
Compound Symbols:
c, c1, c2, c3, c4, c5, c6, c7
(3) CdtLeafRemovalProof (BOTH BOUNDS(ID, ID) transformation)
Removed 4 trailing nodes:
APP(nil, z0) → c
APP(z0, nil) → c1
SUM(cons(z0, nil)) → c3
PLUS(0, z0) → c6
(4) Obligation:
Complexity Dependency Tuples Problem
Rules:
app(nil, z0) → z0
app(z0, nil) → z0
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
sum(cons(z0, nil)) → cons(z0, nil)
sum(cons(z0, cons(z1, z2))) → sum(cons(plus(z0, z1), z2))
sum(app(z0, cons(z1, cons(z2, z3)))) → sum(app(z0, sum(cons(z1, cons(z2, z3)))))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
Tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
SUM(app(z0, cons(z1, cons(z2, z3)))) → c5(SUM(app(z0, sum(cons(z1, cons(z2, z3))))), APP(z0, sum(cons(z1, cons(z2, z3)))), SUM(cons(z1, cons(z2, z3))))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
S tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
SUM(app(z0, cons(z1, cons(z2, z3)))) → c5(SUM(app(z0, sum(cons(z1, cons(z2, z3))))), APP(z0, sum(cons(z1, cons(z2, z3)))), SUM(cons(z1, cons(z2, z3))))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
K tuples:none
Defined Rule Symbols:
app, sum, plus
Defined Pair Symbols:
APP, SUM, PLUS
Compound Symbols:
c2, c4, c5, c7
(5) CdtUnreachableProof (EQUIVALENT transformation)
The following tuples could be removed as they are not reachable from basic start terms:
SUM(app(z0, cons(z1, cons(z2, z3)))) → c5(SUM(app(z0, sum(cons(z1, cons(z2, z3))))), APP(z0, sum(cons(z1, cons(z2, z3)))), SUM(cons(z1, cons(z2, z3))))
(6) Obligation:
Complexity Dependency Tuples Problem
Rules:
app(nil, z0) → z0
app(z0, nil) → z0
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
sum(cons(z0, nil)) → cons(z0, nil)
sum(cons(z0, cons(z1, z2))) → sum(cons(plus(z0, z1), z2))
sum(app(z0, cons(z1, cons(z2, z3)))) → sum(app(z0, sum(cons(z1, cons(z2, z3)))))
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
Tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
S tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
K tuples:none
Defined Rule Symbols:
app, sum, plus
Defined Pair Symbols:
APP, SUM, PLUS
Compound Symbols:
c2, c4, c7
(7) CdtUsableRulesProof (EQUIVALENT transformation)
The following rules are not usable and were removed:
app(nil, z0) → z0
app(z0, nil) → z0
app(cons(z0, z1), z2) → cons(z0, app(z1, z2))
sum(cons(z0, nil)) → cons(z0, nil)
sum(cons(z0, cons(z1, z2))) → sum(cons(plus(z0, z1), z2))
sum(app(z0, cons(z1, cons(z2, z3)))) → sum(app(z0, sum(cons(z1, cons(z2, z3)))))
(8) Obligation:
Complexity Dependency Tuples Problem
Rules:
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
Tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
S tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
K tuples:none
Defined Rule Symbols:
plus
Defined Pair Symbols:
APP, SUM, PLUS
Compound Symbols:
c2, c4, c7
(9) CdtRuleRemovalProof (UPPER BOUND(ADD(n^1)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
We considered the (Usable) Rules:none
And the Tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(APP(x1, x2)) = [4]x1
POL(PLUS(x1, x2)) = [2]
POL(SUM(x1)) = [4]x1
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(cons(x1, x2)) = [4] + x2
POL(plus(x1, x2)) = [4] + [4]x1 + x2
POL(s(x1)) = [3] + x1
(10) Obligation:
Complexity Dependency Tuples Problem
Rules:
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
Tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
S tuples:
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
K tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
Defined Rule Symbols:
plus
Defined Pair Symbols:
APP, SUM, PLUS
Compound Symbols:
c2, c4, c7
(11) CdtRuleRemovalProof (UPPER BOUND(ADD(n^2)) transformation)
Found a reduction pair which oriented the following tuples strictly. Hence they can be removed from S.
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
We considered the (Usable) Rules:
plus(s(z0), z1) → s(plus(z0, z1))
plus(0, z0) → z0
And the Tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
The order we found is given by the following interpretation:
Polynomial interpretation :
POL(0) = 0
POL(APP(x1, x2)) = [2]x1·x2
POL(PLUS(x1, x2)) = x1 + [3]x2
POL(SUM(x1)) = [2]x12
POL(c2(x1)) = x1
POL(c4(x1, x2)) = x1 + x2
POL(c7(x1)) = x1
POL(cons(x1, x2)) = [2] + x1 + x2
POL(plus(x1, x2)) = x1 + x2
POL(s(x1)) = [1] + x1
(12) Obligation:
Complexity Dependency Tuples Problem
Rules:
plus(0, z0) → z0
plus(s(z0), z1) → s(plus(z0, z1))
Tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
S tuples:none
K tuples:
APP(cons(z0, z1), z2) → c2(APP(z1, z2))
SUM(cons(z0, cons(z1, z2))) → c4(SUM(cons(plus(z0, z1), z2)), PLUS(z0, z1))
PLUS(s(z0), z1) → c7(PLUS(z0, z1))
Defined Rule Symbols:
plus
Defined Pair Symbols:
APP, SUM, PLUS
Compound Symbols:
c2, c4, c7
(13) SIsEmptyProof (BOTH BOUNDS(ID, ID) transformation)
The set S is empty
(14) BOUNDS(1, 1)