*** 1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Weak DP Rules:
Weak TRS Rules:
Signature:
{plus/2,times/2} / {0/0,s/1}
Obligation:
Innermost
basic terms: {plus,times}/{0,s}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
plus#(x,0()) -> c_1()
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(0(),x) -> c_3()
plus#(s(x),y) -> c_4(plus#(x,y))
times#(x,0()) -> c_5()
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak DPs
and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
plus#(x,0()) -> c_1()
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(0(),x) -> c_3()
plus#(s(x),y) -> c_4(plus#(x,y))
times#(x,0()) -> c_5()
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,3,5}
by application of
Pre({1,3,5}) = {2,4,6}.
Here rules are labelled as follows:
1: plus#(x,0()) -> c_1()
2: plus#(x,s(y)) -> c_2(plus#(x,y))
3: plus#(0(),x) -> c_3()
4: plus#(s(x),y) -> c_4(plus#(x,y))
5: times#(x,0()) -> c_5()
6: times#(x,s(y)) ->
c_6(plus#(times(x,y),x)
,times#(x,y))
*** 1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(x,0()) -> c_1()
plus#(0(),x) -> c_3()
times#(x,0()) -> c_5()
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:plus#(x,s(y)) -> c_2(plus#(x,y))
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
-->_1 plus#(0(),x) -> c_3():5
-->_1 plus#(x,0()) -> c_1():4
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
2:S:plus#(s(x),y) -> c_4(plus#(x,y))
-->_1 plus#(0(),x) -> c_3():5
-->_1 plus#(x,0()) -> c_1():4
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
3:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
-->_2 times#(x,0()) -> c_5():6
-->_1 plus#(0(),x) -> c_3():5
-->_1 plus#(x,0()) -> c_1():4
-->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):3
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
4:W:plus#(x,0()) -> c_1()
5:W:plus#(0(),x) -> c_3()
6:W:times#(x,0()) -> c_5()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
6: times#(x,0()) -> c_5()
4: plus#(x,0()) -> c_1()
5: plus#(0(),x) -> c_3()
*** 1.1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd}
Proof:
We analyse the complexity of following sub-problems (R) and (S).
Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component.
Problem (R)
Strict DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Problem (S)
Strict DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
*** 1.1.1.1.1 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: plus#(x,s(y)) -> c_2(plus#(x,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_2) = {1},
uargs(c_4) = {1},
uargs(c_6) = {1,2}
Following symbols are considered usable:
{plus#,times#}
TcT has computed the following interpretation:
p(0) = 0
p(plus) = 4 + x1 + x1*x2 + 2*x1^2 + 3*x2^2
p(s) = 1 + x1
p(times) = 2 + x1*x2 + x2^2
p(plus#) = 2*x2
p(times#) = 5 + 7*x1 + 6*x1*x2
p(c_1) = 1
p(c_2) = 1 + x1
p(c_3) = 0
p(c_4) = x1
p(c_5) = 1
p(c_6) = x1 + x2
Following rules are strictly oriented:
plus#(x,s(y)) = 2 + 2*y
> 1 + 2*y
= c_2(plus#(x,y))
Following rules are (at-least) weakly oriented:
plus#(s(x),y) = 2*y
>= 2*y
= c_4(plus#(x,y))
times#(x,s(y)) = 5 + 13*x + 6*x*y
>= 5 + 9*x + 6*x*y
= c_6(plus#(times(x,y),x)
,times#(x,y))
*** 1.1.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_4(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.2 Progress [(?,O(n^3))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_4(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
Proof:
We decompose the input problem according to the dependency graph into the upper component
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
and a lower component
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
Further, following extension rules are added to the lower component.
times#(x,s(y)) -> plus#(times(x,y),x)
times#(x,s(y)) -> times#(x,y)
*** 1.1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: times#(x,s(y)) ->
c_6(plus#(times(x,y),x)
,times#(x,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_6) = {1,2}
Following symbols are considered usable:
{plus#,times#}
TcT has computed the following interpretation:
p(0) = [0]
p(plus) = [0]
p(s) = [1] x1 + [15]
p(times) = [1] x2 + [1]
p(plus#) = [2]
p(times#) = [1] x2 + [8]
p(c_1) = [2]
p(c_2) = [1] x1 + [0]
p(c_3) = [0]
p(c_4) = [0]
p(c_5) = [0]
p(c_6) = [4] x1 + [1] x2 + [5]
Following rules are strictly oriented:
times#(x,s(y)) = [1] y + [23]
> [1] y + [21]
= c_6(plus#(times(x,y),x)
,times#(x,y))
Following rules are (at-least) weakly oriented:
*** 1.1.1.1.1.2.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.2.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
-->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: times#(x,s(y)) ->
c_6(plus#(times(x,y),x)
,times#(x,y))
*** 1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.1.2.2 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_4(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
times#(x,s(y)) -> plus#(times(x,y),x)
times#(x,s(y)) -> times#(x,y)
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: plus#(s(x),y) -> c_4(plus#(x,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.1.2.2.1 Progress [(?,O(n^2))] ***
Considered Problem:
Strict DP Rules:
plus#(s(x),y) -> c_4(plus#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
times#(x,s(y)) -> plus#(times(x,y),x)
times#(x,s(y)) -> times#(x,y)
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a polynomial interpretation of kind constructor-based(mixed(2)):
The following argument positions are considered usable:
uargs(c_2) = {1},
uargs(c_4) = {1}
Following symbols are considered usable:
{plus,times,plus#,times#}
TcT has computed the following interpretation:
p(0) = 0
p(plus) = x1 + x2
p(s) = 1 + x1
p(times) = 2*x1 + 2*x1*x2 + x2 + x2^2
p(plus#) = 2*x1 + 6*x2^2
p(times#) = 2 + 2*x1 + 4*x1*x2 + 6*x1^2 + 6*x2 + 4*x2^2
p(c_1) = 1
p(c_2) = x1
p(c_3) = 0
p(c_4) = x1
p(c_5) = 1
p(c_6) = x2
Following rules are strictly oriented:
plus#(s(x),y) = 2 + 2*x + 6*y^2
> 2*x + 6*y^2
= c_4(plus#(x,y))
Following rules are (at-least) weakly oriented:
plus#(x,s(y)) = 6 + 2*x + 12*y + 6*y^2
>= 2*x + 6*y^2
= c_2(plus#(x,y))
times#(x,s(y)) = 12 + 6*x + 4*x*y + 6*x^2 + 14*y + 4*y^2
>= 4*x + 4*x*y + 6*x^2 + 2*y + 2*y^2
= plus#(times(x,y),x)
times#(x,s(y)) = 12 + 6*x + 4*x*y + 6*x^2 + 14*y + 4*y^2
>= 2 + 2*x + 4*x*y + 6*x^2 + 6*y + 4*y^2
= times#(x,y)
plus(x,0()) = x
>= x
= x
plus(x,s(y)) = 1 + x + y
>= 1 + x + y
= s(plus(x,y))
plus(0(),x) = x
>= x
= x
plus(s(x),y) = 1 + x + y
>= 1 + x + y
= s(plus(x,y))
times(x,0()) = 2*x
>= 0
= 0()
times(x,s(y)) = 2 + 4*x + 2*x*y + 3*y + y^2
>= 3*x + 2*x*y + y + y^2
= plus(times(x,y),x)
*** 1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
times#(x,s(y)) -> plus#(times(x,y),x)
times#(x,s(y)) -> times#(x,y)
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.1.2.2.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
times#(x,s(y)) -> plus#(times(x,y),x)
times#(x,s(y)) -> times#(x,y)
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:plus#(x,s(y)) -> c_2(plus#(x,y))
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
2:W:plus#(s(x),y) -> c_4(plus#(x,y))
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
3:W:times#(x,s(y)) -> plus#(times(x,y),x)
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1
4:W:times#(x,s(y)) -> times#(x,y)
-->_1 times#(x,s(y)) -> times#(x,y):4
-->_1 times#(x,s(y)) -> plus#(times(x,y),x):3
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
4: times#(x,s(y)) -> times#(x,y)
3: times#(x,s(y)) -> plus#(times(x
,y)
,x)
1: plus#(x,s(y)) -> c_2(plus#(x,y))
2: plus#(s(x),y) -> c_4(plus#(x,y))
*** 1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).
*** 1.1.1.1.2 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
plus#(x,s(y)) -> c_2(plus#(x,y))
plus#(s(x),y) -> c_4(plus#(x,y))
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2
-->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1
2:W:plus#(x,s(y)) -> c_2(plus#(x,y))
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2
3:W:plus#(s(x),y) -> c_4(plus#(x,y))
-->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3
-->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
3: plus#(s(x),y) -> c_4(plus#(x,y))
2: plus#(x,s(y)) -> c_2(plus#(x,y))
*** 1.1.1.1.2.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
SimplifyRHS
Proof:
Consider the dependency graph
1:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y))
-->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1
Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
times#(x,s(y)) -> c_6(times#(x,y))
*** 1.1.1.1.2.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
times#(x,s(y)) -> c_6(times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
plus(x,0()) -> x
plus(x,s(y)) -> s(plus(x,y))
plus(0(),x) -> x
plus(s(x),y) -> s(plus(x,y))
times(x,0()) -> 0()
times(x,s(y)) -> plus(times(x,y),x)
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
times#(x,s(y)) -> c_6(times#(x,y))
*** 1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
times#(x,s(y)) -> c_6(times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
Proof:
We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
1: times#(x,s(y)) -> c_6(times#(x
,y))
The strictly oriented rules are moved into the weak component.
*** 1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] ***
Considered Problem:
Strict DP Rules:
times#(x,s(y)) -> c_6(times#(x,y))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation:
The following argument positions are considered usable:
uargs(c_6) = {1}
Following symbols are considered usable:
{plus#,times#}
TcT has computed the following interpretation:
p(0) = [0]
p(plus) = [0]
p(s) = [1] x1 + [9]
p(times) = [0]
p(plus#) = [0]
p(times#) = [1] x2 + [3]
p(c_1) = [0]
p(c_2) = [0]
p(c_3) = [0]
p(c_4) = [0]
p(c_5) = [0]
p(c_6) = [1] x1 + [1]
Following rules are strictly oriented:
times#(x,s(y)) = [1] y + [12]
> [1] y + [4]
= c_6(times#(x,y))
Following rules are (at-least) weakly oriented:
*** 1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
times#(x,s(y)) -> c_6(times#(x,y))
Weak TRS Rules:
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
Assumption
Proof:
()
*** 1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
times#(x,s(y)) -> c_6(times#(x,y))
Weak TRS Rules:
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:W:times#(x,s(y)) -> c_6(times#(x,y))
-->_1 times#(x,s(y)) -> c_6(times#(x,y)):1
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
1: times#(x,s(y)) -> c_6(times#(x
,y))
*** 1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1}
Obligation:
Innermost
basic terms: {plus#,times#}/{0,s}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).