*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Weak DP Rules: Weak TRS Rules: Signature: {plus/2,times/2} / {0/0,s/1} Obligation: Innermost basic terms: {plus,times}/{0,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs plus#(x,0()) -> c_1() plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(0(),x) -> c_3() plus#(s(x),y) -> c_4(plus#(x,y)) times#(x,0()) -> c_5() times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: plus#(x,0()) -> c_1() plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(0(),x) -> c_3() plus#(s(x),y) -> c_4(plus#(x,y)) times#(x,0()) -> c_5() times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,3,5} by application of Pre({1,3,5}) = {2,4,6}. Here rules are labelled as follows: 1: plus#(x,0()) -> c_1() 2: plus#(x,s(y)) -> c_2(plus#(x,y)) 3: plus#(0(),x) -> c_3() 4: plus#(s(x),y) -> c_4(plus#(x,y)) 5: times#(x,0()) -> c_5() 6: times#(x,s(y)) -> c_6(plus#(times(x,y),x) ,times#(x,y)) *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(x,0()) -> c_1() plus#(0(),x) -> c_3() times#(x,0()) -> c_5() Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:plus#(x,s(y)) -> c_2(plus#(x,y)) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2 -->_1 plus#(0(),x) -> c_3():5 -->_1 plus#(x,0()) -> c_1():4 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1 2:S:plus#(s(x),y) -> c_4(plus#(x,y)) -->_1 plus#(0(),x) -> c_3():5 -->_1 plus#(x,0()) -> c_1():4 -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1 3:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) -->_2 times#(x,0()) -> c_5():6 -->_1 plus#(0(),x) -> c_3():5 -->_1 plus#(x,0()) -> c_1():4 -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):3 -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1 4:W:plus#(x,0()) -> c_1() 5:W:plus#(0(),x) -> c_3() 6:W:times#(x,0()) -> c_5() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: times#(x,0()) -> c_5() 4: plus#(x,0()) -> c_1() 5: plus#(0(),x) -> c_3() *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) Strict TRS Rules: Weak DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Problem (S) Strict DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} *** 1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) Strict TRS Rules: Weak DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(x,s(y)) -> c_2(plus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) Strict TRS Rules: Weak DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1}, uargs(c_6) = {1,2} Following symbols are considered usable: {plus#,times#} TcT has computed the following interpretation: p(0) = 0 p(plus) = 4 + x1 + x1*x2 + 2*x1^2 + 3*x2^2 p(s) = 1 + x1 p(times) = 2 + x1*x2 + x2^2 p(plus#) = 2*x2 p(times#) = 5 + 7*x1 + 6*x1*x2 p(c_1) = 1 p(c_2) = 1 + x1 p(c_3) = 0 p(c_4) = x1 p(c_5) = 1 p(c_6) = x1 + x2 Following rules are strictly oriented: plus#(x,s(y)) = 2 + 2*y > 1 + 2*y = c_2(plus#(x,y)) Following rules are (at-least) weakly oriented: plus#(s(x),y) = 2*y >= 2*y = c_4(plus#(x,y)) times#(x,s(y)) = 5 + 13*x + 6*x*y >= 5 + 9*x + 6*x*y = c_6(plus#(times(x,y),x) ,times#(x,y)) *** 1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_4(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_4(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) and a lower component plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) Further, following extension rules are added to the lower component. times#(x,s(y)) -> plus#(times(x,y),x) times#(x,s(y)) -> times#(x,y) *** 1.1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: times#(x,s(y)) -> c_6(plus#(times(x,y),x) ,times#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1,2} Following symbols are considered usable: {plus#,times#} TcT has computed the following interpretation: p(0) = [0] p(plus) = [0] p(s) = [1] x1 + [15] p(times) = [1] x2 + [1] p(plus#) = [2] p(times#) = [1] x2 + [8] p(c_1) = [2] p(c_2) = [1] x1 + [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [4] x1 + [1] x2 + [5] Following rules are strictly oriented: times#(x,s(y)) = [1] y + [23] > [1] y + [21] = c_6(plus#(times(x,y),x) ,times#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: times#(x,s(y)) -> c_6(plus#(times(x,y),x) ,times#(x,y)) *** 1.1.1.1.1.2.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_4(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) times#(x,s(y)) -> plus#(times(x,y),x) times#(x,s(y)) -> times#(x,y) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: plus#(s(x),y) -> c_4(plus#(x,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: plus#(s(x),y) -> c_4(plus#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) times#(x,s(y)) -> plus#(times(x,y),x) times#(x,s(y)) -> times#(x,y) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_2) = {1}, uargs(c_4) = {1} Following symbols are considered usable: {plus,times,plus#,times#} TcT has computed the following interpretation: p(0) = 0 p(plus) = x1 + x2 p(s) = 1 + x1 p(times) = 2*x1 + 2*x1*x2 + x2 + x2^2 p(plus#) = 2*x1 + 6*x2^2 p(times#) = 2 + 2*x1 + 4*x1*x2 + 6*x1^2 + 6*x2 + 4*x2^2 p(c_1) = 1 p(c_2) = x1 p(c_3) = 0 p(c_4) = x1 p(c_5) = 1 p(c_6) = x2 Following rules are strictly oriented: plus#(s(x),y) = 2 + 2*x + 6*y^2 > 2*x + 6*y^2 = c_4(plus#(x,y)) Following rules are (at-least) weakly oriented: plus#(x,s(y)) = 6 + 2*x + 12*y + 6*y^2 >= 2*x + 6*y^2 = c_2(plus#(x,y)) times#(x,s(y)) = 12 + 6*x + 4*x*y + 6*x^2 + 14*y + 4*y^2 >= 4*x + 4*x*y + 6*x^2 + 2*y + 2*y^2 = plus#(times(x,y),x) times#(x,s(y)) = 12 + 6*x + 4*x*y + 6*x^2 + 14*y + 4*y^2 >= 2 + 2*x + 4*x*y + 6*x^2 + 6*y + 4*y^2 = times#(x,y) plus(x,0()) = x >= x = x plus(x,s(y)) = 1 + x + y >= 1 + x + y = s(plus(x,y)) plus(0(),x) = x >= x = x plus(s(x),y) = 1 + x + y >= 1 + x + y = s(plus(x,y)) times(x,0()) = 2*x >= 0 = 0() times(x,s(y)) = 2 + 4*x + 2*x*y + 3*y + y^2 >= 3*x + 2*x*y + y + y^2 = plus(times(x,y),x) *** 1.1.1.1.1.2.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) times#(x,s(y)) -> plus#(times(x,y),x) times#(x,s(y)) -> times#(x,y) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) times#(x,s(y)) -> plus#(times(x,y),x) times#(x,s(y)) -> times#(x,y) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:plus#(x,s(y)) -> c_2(plus#(x,y)) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1 2:W:plus#(s(x),y) -> c_4(plus#(x,y)) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1 3:W:times#(x,s(y)) -> plus#(times(x,y),x) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):2 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):1 4:W:times#(x,s(y)) -> times#(x,y) -->_1 times#(x,s(y)) -> times#(x,y):4 -->_1 times#(x,s(y)) -> plus#(times(x,y),x):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: times#(x,s(y)) -> times#(x,y) 3: times#(x,s(y)) -> plus#(times(x ,y) ,x) 1: plus#(x,s(y)) -> c_2(plus#(x,y)) 2: plus#(s(x),y) -> c_4(plus#(x,y)) *** 1.1.1.1.1.2.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: plus#(x,s(y)) -> c_2(plus#(x,y)) plus#(s(x),y) -> c_4(plus#(x,y)) Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2 -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1 2:W:plus#(x,s(y)) -> c_2(plus#(x,y)) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2 3:W:plus#(s(x),y) -> c_4(plus#(x,y)) -->_1 plus#(s(x),y) -> c_4(plus#(x,y)):3 -->_1 plus#(x,s(y)) -> c_2(plus#(x,y)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: plus#(s(x),y) -> c_4(plus#(x,y)) 2: plus#(x,s(y)) -> c_2(plus#(x,y)) *** 1.1.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/2} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)) -->_2 times#(x,s(y)) -> c_6(plus#(times(x,y),x),times#(x,y)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: times#(x,s(y)) -> c_6(times#(x,y)) *** 1.1.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(x,s(y)) -> c_6(times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: plus(x,0()) -> x plus(x,s(y)) -> s(plus(x,y)) plus(0(),x) -> x plus(s(x),y) -> s(plus(x,y)) times(x,0()) -> 0() times(x,s(y)) -> plus(times(x,y),x) Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: times#(x,s(y)) -> c_6(times#(x,y)) *** 1.1.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(x,s(y)) -> c_6(times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: times#(x,s(y)) -> c_6(times#(x ,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.2.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: times#(x,s(y)) -> c_6(times#(x,y)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_6) = {1} Following symbols are considered usable: {plus#,times#} TcT has computed the following interpretation: p(0) = [0] p(plus) = [0] p(s) = [1] x1 + [9] p(times) = [0] p(plus#) = [0] p(times#) = [1] x2 + [3] p(c_1) = [0] p(c_2) = [0] p(c_3) = [0] p(c_4) = [0] p(c_5) = [0] p(c_6) = [1] x1 + [1] Following rules are strictly oriented: times#(x,s(y)) = [1] y + [12] > [1] y + [4] = c_6(times#(x,y)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(x,s(y)) -> c_6(times#(x,y)) Weak TRS Rules: Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: Assumption Proof: () *** 1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: times#(x,s(y)) -> c_6(times#(x,y)) Weak TRS Rules: Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:times#(x,s(y)) -> c_6(times#(x,y)) -->_1 times#(x,s(y)) -> c_6(times#(x,y)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: times#(x,s(y)) -> c_6(times#(x ,y)) *** 1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {plus/2,times/2,plus#/2,times#/2} / {0/0,s/1,c_1/0,c_2/1,c_3/0,c_4/1,c_5/0,c_6/1} Obligation: Innermost basic terms: {plus#,times#}/{0,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).