*** 1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() Weak DP Rules: Weak TRS Rules: Signature: {app/2,reverse/1,shuffle/1} / {add/2,nil/0} Obligation: Innermost basic terms: {app,reverse,shuffle}/{add,nil} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_4() shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_6() Weak DPs and mark the set of starting terms. *** 1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_4() shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_6() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() shuffle(add(n,x)) -> add(n,shuffle(reverse(x))) shuffle(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_4() shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_6() *** 1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) app#(nil(),y) -> c_2() reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) reverse#(nil()) -> c_4() shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) shuffle#(nil()) -> c_6() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {2,4,6} by application of Pre({2,4,6}) = {1,3,5}. Here rules are labelled as follows: 1: app#(add(n,x),y) -> c_1(app#(x ,y)) 2: app#(nil(),y) -> c_2() 3: reverse#(add(n,x)) -> c_3(app#(reverse(x) ,add(n,nil())) ,reverse#(x)) 4: reverse#(nil()) -> c_4() 5: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)) ,reverse#(x)) 6: shuffle#(nil()) -> c_6() *** 1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: app#(nil(),y) -> c_2() reverse#(nil()) -> c_4() shuffle#(nil()) -> c_6() Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(nil(),y) -> c_2():4 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 2:S:reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(nil()) -> c_4():5 -->_1 app#(nil(),y) -> c_2():4 -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):2 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 3:S:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(nil()) -> c_6():6 -->_2 reverse#(nil()) -> c_4():5 -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):3 -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):2 4:W:app#(nil(),y) -> c_2() 5:W:reverse#(nil()) -> c_4() 6:W:shuffle#(nil()) -> c_6() The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: shuffle#(nil()) -> c_6() 5: reverse#(nil()) -> c_4() 4: app#(nil(),y) -> c_2() *** 1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Problem (S) Strict DP Rules: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} *** 1.1.1.1.1.1 Progress [(?,O(n^3))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing} Proof: We decompose the input problem according to the dependency graph into the upper component shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) and a lower component app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) Further, following extension rules are added to the lower component. shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)) ,reverse#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {app,reverse,app#,reverse#,shuffle#} TcT has computed the following interpretation: p(add) = [1] x2 + [3] p(app) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(reverse) = [1] x1 + [2] p(shuffle) = [1] x1 + [0] p(app#) = [1] x1 + [1] x2 + [1] p(reverse#) = [3] p(shuffle#) = [4] x1 + [0] p(c_1) = [1] p(c_2) = [2] p(c_3) = [2] x1 + [2] x2 + [4] p(c_4) = [1] p(c_5) = [1] x1 + [1] x2 + [0] p(c_6) = [2] Following rules are strictly oriented: shuffle#(add(n,x)) = [4] x + [12] > [4] x + [11] = c_5(shuffle#(reverse(x)) ,reverse#(x)) Following rules are (at-least) weakly oriented: app(add(n,x),y) = [1] x + [1] y + [3] >= [1] x + [1] y + [3] = add(n,app(x,y)) app(nil(),y) = [1] y + [0] >= [1] y + [0] = y reverse(add(n,x)) = [1] x + [5] >= [1] x + [5] = app(reverse(x),add(n,nil())) reverse(nil()) = [2] >= [0] = nil() *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)) ,reverse#(x)) *** 1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: app#(add(n,x),y) -> c_1(app#(x ,y)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_1) = {1}, uargs(c_3) = {1,2} Following symbols are considered usable: {app,reverse,app#,reverse#,shuffle#} TcT has computed the following interpretation: p(add) = 1 + x2 p(app) = x1 + x2 p(nil) = 0 p(reverse) = x1 p(shuffle) = 4 + x1 + x1^2 p(app#) = 2*x1 p(reverse#) = x1^2 p(shuffle#) = 1 + x1^2 p(c_1) = x1 p(c_2) = 1 p(c_3) = x1 + x2 p(c_4) = 0 p(c_5) = 1 p(c_6) = 0 Following rules are strictly oriented: app#(add(n,x),y) = 2 + 2*x > 2*x = c_1(app#(x,y)) Following rules are (at-least) weakly oriented: reverse#(add(n,x)) = 1 + 2*x + x^2 >= 2*x + x^2 = c_3(app#(reverse(x) ,add(n,nil())) ,reverse#(x)) shuffle#(add(n,x)) = 2 + 2*x + x^2 >= x^2 = reverse#(x) shuffle#(add(n,x)) = 2 + 2*x + x^2 >= 1 + x^2 = shuffle#(reverse(x)) app(add(n,x),y) = 1 + x + y >= 1 + x + y = add(n,app(x,y)) app(nil(),y) = y >= y = y reverse(add(n,x)) = 1 + x >= 1 + x = app(reverse(x),add(n,nil())) reverse(nil()) = 0 >= 0 = nil() *** 1.1.1.1.1.1.2.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.2.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> reverse#(x) shuffle#(add(n,x)) -> shuffle#(reverse(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 2:W:reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):2 -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):1 3:W:shuffle#(add(n,x)) -> reverse#(x) -->_1 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):2 4:W:shuffle#(add(n,x)) -> shuffle#(reverse(x)) -->_1 shuffle#(add(n,x)) -> shuffle#(reverse(x)):4 -->_1 shuffle#(add(n,x)) -> reverse#(x):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 4: shuffle#(add(n,x)) -> shuffle#(reverse(x)) 3: shuffle#(add(n,x)) -> reverse#(x) 2: reverse#(add(n,x)) -> c_3(app#(reverse(x) ,add(n,nil())) ,reverse#(x)) 1: app#(add(n,x),y) -> c_1(app#(x ,y)) *** 1.1.1.1.1.1.2.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: app#(add(n,x),y) -> c_1(app#(x,y)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):3 -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):1 2:S:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):2 -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):1 3:W:app#(add(n,x),y) -> c_1(app#(x,y)) -->_1 app#(add(n,x),y) -> c_1(app#(x,y)):3 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 3: app#(add(n,x),y) -> c_1(app#(x ,y)) *** 1.1.1.1.1.2.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/2,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):1 2:S:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):2 -->_2 reverse#(add(n,x)) -> c_3(app#(reverse(x),add(n,nil())),reverse#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: reverse#(add(n,x)) -> c_3(reverse#(x)) *** 1.1.1.1.1.2.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: Decompose {onSelection = all cycle independent sub-graph, withBound = RelativeAdd} Proof: We analyse the complexity of following sub-problems (R) and (S). Problem (S) is obtained from the input problem by shifting strict rules from (R) into the weak component. Problem (R) Strict DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Problem (S) Strict DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} *** 1.1.1.1.1.2.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: reverse#(add(n,x)) -> c_3(reverse#(x)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.1.1 Progress [(?,O(n^2))] *** Considered Problem: Strict DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a polynomial interpretation of kind constructor-based(mixed(2)): The following argument positions are considered usable: uargs(c_3) = {1}, uargs(c_5) = {1,2} Following symbols are considered usable: {app,reverse,app#,reverse#,shuffle#} TcT has computed the following interpretation: p(add) = 1 + x2 p(app) = x1 + x2 p(nil) = 0 p(reverse) = x1 p(shuffle) = 4 + x1 + x1^2 p(app#) = 2*x1^2 p(reverse#) = 4 + 2*x1 p(shuffle#) = 5 + 4*x1^2 p(c_1) = x1 p(c_2) = 0 p(c_3) = x1 p(c_4) = 0 p(c_5) = x1 + x2 p(c_6) = 1 Following rules are strictly oriented: reverse#(add(n,x)) = 6 + 2*x > 4 + 2*x = c_3(reverse#(x)) Following rules are (at-least) weakly oriented: shuffle#(add(n,x)) = 9 + 8*x + 4*x^2 >= 9 + 2*x + 4*x^2 = c_5(shuffle#(reverse(x)) ,reverse#(x)) app(add(n,x),y) = 1 + x + y >= 1 + x + y = add(n,app(x,y)) app(nil(),y) = y >= y = y reverse(add(n,x)) = 1 + x >= 1 + x = app(reverse(x),add(n,nil())) reverse(nil()) = 0 >= 0 = nil() *** 1.1.1.1.1.2.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:reverse#(add(n,x)) -> c_3(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_3(reverse#(x)):1 2:W:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):2 -->_2 reverse#(add(n,x)) -> c_3(reverse#(x)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)) ,reverse#(x)) 1: reverse#(add(n,x)) -> c_3(reverse#(x)) *** 1.1.1.1.1.2.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1). *** 1.1.1.1.1.2.1.1.2 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: reverse#(add(n,x)) -> c_3(reverse#(x)) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_2 reverse#(add(n,x)) -> c_3(reverse#(x)):2 -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):1 2:W:reverse#(add(n,x)) -> c_3(reverse#(x)) -->_1 reverse#(add(n,x)) -> c_3(reverse#(x)):2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 2: reverse#(add(n,x)) -> c_3(reverse#(x)) *** 1.1.1.1.1.2.1.1.2.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/2,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)) -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x)),reverse#(x)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) *** 1.1.1.1.1.2.1.1.2.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.2.1.1.2.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_5) = {1} Following symbols are considered usable: {app,reverse,app#,reverse#,shuffle#} TcT has computed the following interpretation: p(add) = [1] x1 + [1] x2 + [4] p(app) = [1] x1 + [1] x2 + [0] p(nil) = [0] p(reverse) = [1] x1 + [0] p(shuffle) = [8] x1 + [4] p(app#) = [1] x2 + [0] p(reverse#) = [1] p(shuffle#) = [4] x1 + [8] p(c_1) = [1] p(c_2) = [1] p(c_3) = [1] p(c_4) = [0] p(c_5) = [1] x1 + [12] p(c_6) = [8] Following rules are strictly oriented: shuffle#(add(n,x)) = [4] n + [4] x + [24] > [4] x + [20] = c_5(shuffle#(reverse(x))) Following rules are (at-least) weakly oriented: app(add(n,x),y) = [1] n + [1] x + [1] y + [4] >= [1] n + [1] x + [1] y + [4] = add(n,app(x,y)) app(nil(),y) = [1] y + [0] >= [1] y + [0] = y reverse(add(n,x)) = [1] n + [1] x + [4] >= [1] n + [1] x + [4] = app(reverse(x),add(n,nil())) reverse(nil()) = [0] >= [0] = nil() *** 1.1.1.1.1.2.1.1.2.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.2.1.1.2.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) -->_1 shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: shuffle#(add(n,x)) -> c_5(shuffle#(reverse(x))) *** 1.1.1.1.1.2.1.1.2.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: app(add(n,x),y) -> add(n,app(x,y)) app(nil(),y) -> y reverse(add(n,x)) -> app(reverse(x),add(n,nil())) reverse(nil()) -> nil() Signature: {app/2,reverse/1,shuffle/1,app#/2,reverse#/1,shuffle#/1} / {add/2,nil/0,c_1/1,c_2/0,c_3/1,c_4/0,c_5/1,c_6/0} Obligation: Innermost basic terms: {app#,reverse#,shuffle#}/{add,nil} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).