(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, 0) → s(0)
f(s(x), s(y)) → s(f(x, y))
g(0, x) → g(f(x, x), x)
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(x), s(y)) →+ s(f(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, 0') → s(0')
f(s(x), s(y)) → s(f(x, y))
g(0', x) → g(f(x, x), x)
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(x, 0') → s(0')
f(s(x), s(y)) → s(f(x, y))
g(0', x) → g(f(x, x), x)
Types:
f :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
g :: 0':s → 0':s → g
hole_0':s1_0 :: 0':s
hole_g2_0 :: g
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
f < g
(8) Obligation:
TRS:
Rules:
f(
x,
0') →
s(
0')
f(
s(
x),
s(
y)) →
s(
f(
x,
y))
g(
0',
x) →
g(
f(
x,
x),
x)
Types:
f :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
g :: 0':s → 0':s → g
hole_0':s1_0 :: 0':s
hole_g2_0 :: g
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f, g
They will be analysed ascendingly in the following order:
f < g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
+(
1,
n5_0)), rt ∈ Ω(1 + n5
0)
Induction Base:
f(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
s(0')
Induction Step:
f(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(f(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(+(1, c6_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
x,
0') →
s(
0')
f(
s(
x),
s(
y)) →
s(
f(
x,
y))
g(
0',
x) →
g(
f(
x,
x),
x)
Types:
f :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
g :: 0':s → 0':s → g
hole_0':s1_0 :: 0':s
hole_g2_0 :: g
gen_0':s3_0 :: Nat → 0':s
Lemmas:
f(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
TRS:
Rules:
f(
x,
0') →
s(
0')
f(
s(
x),
s(
y)) →
s(
f(
x,
y))
g(
0',
x) →
g(
f(
x,
x),
x)
Types:
f :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
g :: 0':s → 0':s → g
hole_0':s1_0 :: 0':s
hole_g2_0 :: g
gen_0':s3_0 :: Nat → 0':s
Lemmas:
f(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
x,
0') →
s(
0')
f(
s(
x),
s(
y)) →
s(
f(
x,
y))
g(
0',
x) →
g(
f(
x,
x),
x)
Types:
f :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
g :: 0':s → 0':s → g
hole_0':s1_0 :: 0':s
hole_g2_0 :: g
gen_0':s3_0 :: Nat → 0':s
Lemmas:
f(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(+(1, n5_0)), rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)