*** 1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [4]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [0]
                 p(n__a) = [0]                  
                 p(n__e) = [0]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [0]         
               p(n__nil) = [0]                  
                 p(n__o) = [0]                  
                 p(n__u) = [0]                  
                  p(nil) = [7]                  
                    p(o) = [0]                  
                   p(tt) = [1]                  
                    p(u) = [0]                  
        
        Following rules are strictly oriented:
                      __(X,nil()) = [1] X + [11]              
                                  > [1] X + [0]               
                                  = X                         
        
                        __(X1,X2) = [1] X1 + [1] X2 + [4]     
                                  > [1] X1 + [1] X2 + [0]     
                                  = n____(X1,X2)              
        
                      __(nil(),X) = [1] X + [11]              
                                  > [1] X + [0]               
                                  = X                         
        
                      and(tt(),X) = [1] X + [1]               
                                  > [1] X + [0]               
                                  = activate(X)               
        
        isNePal(n____(I,__(P,I))) = [2] I + [1] P + [4]       
                                  > [1] I + [1] P + [0]       
                                  = and(isQid(activate(I))    
                                       ,n__isPal(activate(P)))
        
                            nil() = [7]                       
                                  > [0]                       
                                  = n__nil()                  
        
        
        Following rules are (at-least) weakly oriented:
                   __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [8]   
                                 >= [1] X + [1] Y + [1] Z + [8]   
                                 =  __(X,__(Y,Z))                 
        
                             a() =  [0]                           
                                 >= [0]                           
                                 =  n__a()                        
        
                     activate(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  X                             
        
          activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]         
                                 >= [1] X1 + [1] X2 + [4]         
                                 =  __(X1,X2)                     
        
                activate(n__a()) =  [0]                           
                                 >= [0]                           
                                 =  a()                           
        
                activate(n__e()) =  [0]                           
                                 >= [0]                           
                                 =  e()                           
        
                activate(n__i()) =  [0]                           
                                 >= [0]                           
                                 =  i()                           
        
          activate(n__isList(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isList(X)                     
        
        activate(n__isNeList(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isNeList(X)                   
        
           activate(n__isPal(X)) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  isPal(X)                      
        
              activate(n__nil()) =  [0]                           
                                 >= [7]                           
                                 =  nil()                         
        
                activate(n__o()) =  [0]                           
                                 >= [0]                           
                                 =  o()                           
        
                activate(n__u()) =  [0]                           
                                 >= [0]                           
                                 =  u()                           
        
                             e() =  [0]                           
                                 >= [0]                           
                                 =  n__e()                        
        
                             i() =  [0]                           
                                 >= [0]                           
                                 =  n__i()                        
        
                       isList(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isNeList(activate(V))         
        
                       isList(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isList(X)                  
        
            isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                 >= [1] V1 + [1] V2 + [0]         
                                 =  and(isList(activate(V1))      
                                       ,n__isList(activate(V2)))  
        
                isList(n__nil()) =  [0]                           
                                 >= [1]                           
                                 =  tt()                          
        
                     isNeList(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isQid(activate(V))            
        
                     isNeList(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isNeList(X)                
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                 >= [1] V1 + [1] V2 + [0]         
                                 =  and(isList(activate(V1))      
                                       ,n__isNeList(activate(V2)))
        
          isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                 >= [1] V1 + [1] V2 + [0]         
                                 =  and(isNeList(activate(V1))    
                                       ,n__isList(activate(V2)))  
        
                      isNePal(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isQid(activate(V))            
        
                        isPal(V) =  [1] V + [0]                   
                                 >= [1] V + [0]                   
                                 =  isNePal(activate(V))          
        
                        isPal(X) =  [1] X + [0]                   
                                 >= [1] X + [0]                   
                                 =  n__isPal(X)                   
        
                 isPal(n__nil()) =  [0]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__a()) =  [0]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__e()) =  [0]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__i()) =  [0]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__o()) =  [0]                           
                                 >= [1]                           
                                 =  tt()                          
        
                   isQid(n__u()) =  [0]                           
                                 >= [1]                           
                                 =  tt()                          
        
                             o() =  [0]                           
                                 >= [0]                           
                                 =  n__o()                        
        
                             u() =  [0]                           
                                 >= [0]                           
                                 =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        o() -> n__o()
        u() -> n__u()
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        and(tt(),X) -> activate(X)
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        nil() -> n__nil()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [0]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [4]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [0]
                 p(n__a) = [6]                  
                 p(n__e) = [1]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [4]         
               p(n__nil) = [0]                  
                 p(n__o) = [0]                  
                 p(n__u) = [0]                  
                  p(nil) = [0]                  
                    p(o) = [2]                  
                   p(tt) = [0]                  
                    p(u) = [1]                  
        
        Following rules are strictly oriented:
             activate(n__a()) = [6]               
                              > [0]               
                              = a()               
        
             activate(n__e()) = [1]               
                              > [0]               
                              = e()               
        
        activate(n__isPal(X)) = [1] X + [4]       
                              > [1] X + [0]       
                              = isPal(X)          
        
                   isNePal(V) = [1] V + [4]       
                              > [1] V + [0]       
                              = isQid(activate(V))
        
                isQid(n__a()) = [6]               
                              > [0]               
                              = tt()              
        
                isQid(n__e()) = [1]               
                              > [0]               
                              = tt()              
        
                          o() = [2]               
                              > [0]               
                              = n__o()            
        
                          u() = [1]               
                              > [0]               
                              = n__u()            
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [0]   
                                  >= [1] X + [1] Y + [1] Z + [0]   
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [0]                           
                                  >= [6]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  __(X1,X2)                     
        
                 activate(n__i()) =  [0]                           
                                  >= [0]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isNeList(X)                   
        
               activate(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [0]                           
                                  >= [2]                           
                                  =  o()                           
        
                 activate(n__u()) =  [0]                           
                                  >= [1]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                              e() =  [0]                           
                                  >= [1]                           
                                  =  n__e()                        
        
                              i() =  [0]                           
                                  >= [0]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [4]           
                                  >= [1] I + [1] P + [4]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [0]                   
                                  >= [1] V + [4]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [0]                   
                                  >= [1] X + [4]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                            nil() =  [0]                           
                                  >= [0]                           
                                  =  n__nil()                      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__isPal(X)) -> isPal(X)
        and(tt(),X) -> activate(X)
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [0]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [0]
                 p(n__a) = [0]                  
                 p(n__e) = [0]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [0]         
               p(n__nil) = [0]                  
                 p(n__o) = [0]                  
                 p(n__u) = [1]                  
                  p(nil) = [0]                  
                    p(o) = [0]                  
                   p(tt) = [0]                  
                    p(u) = [1]                  
        
        Following rules are strictly oriented:
        isQid(n__u()) = [1] 
                      > [0] 
                      = tt()
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [0]   
                                  >= [1] X + [1] Y + [1] Z + [0]   
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [0]                           
                                  >= [0]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [0]                           
                                  >= [0]                           
                                  =  a()                           
        
                 activate(n__e()) =  [0]                           
                                  >= [0]                           
                                  =  e()                           
        
                 activate(n__i()) =  [0]                           
                                  >= [0]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  o()                           
        
                 activate(n__u()) =  [1]                           
                                  >= [1]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                              e() =  [0]                           
                                  >= [0]                           
                                  =  n__e()                        
        
                              i() =  [0]                           
                                  >= [0]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [0]           
                                  >= [1] I + [1] P + [0]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                            nil() =  [0]                           
                                  >= [0]                           
                                  =  n__nil()                      
        
                              o() =  [0]                           
                                  >= [0]                           
                                  =  n__o()                        
        
                              u() =  [1]                           
                                  >= [1]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__isPal(X)) -> isPal(X)
        and(tt(),X) -> activate(X)
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [0]
                    p(a) = [1]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [7]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [1]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [1]         
                p(n____) = [1] x1 + [1] x2 + [0]
                 p(n__a) = [1]                  
                 p(n__e) = [2]                  
                 p(n__i) = [1]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [0]         
               p(n__nil) = [0]                  
                 p(n__o) = [0]                  
                 p(n__u) = [1]                  
                  p(nil) = [0]                  
                    p(o) = [0]                  
                   p(tt) = [1]                  
                    p(u) = [1]                  
        
        Following rules are strictly oriented:
        activate(n__i()) = [1]                  
                         > [0]                  
                         = i()                  
        
               isList(V) = [1] V + [7]          
                         > [1] V + [0]          
                         = isNeList(activate(V))
        
               isList(X) = [1] X + [7]          
                         > [1] X + [0]          
                         = n__isList(X)         
        
        isList(n__nil()) = [7]                  
                         > [1]                  
                         = tt()                 
        
           isQid(n__i()) = [2]                  
                         > [1]                  
                         = tt()                 
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [0]   
                                  >= [1] X + [1] Y + [1] Z + [0]   
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [1]                           
                                  >= [1]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [1]                           
                                  >= [1]                           
                                  =  a()                           
        
                 activate(n__e()) =  [2]                           
                                  >= [0]                           
                                  =  e()                           
        
           activate(n__isList(X)) =  [1] X + [0]                   
                                  >= [1] X + [7]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  o()                           
        
                 activate(n__u()) =  [1]                           
                                  >= [1]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [1]                   
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                              e() =  [0]                           
                                  >= [2]                           
                                  =  n__e()                        
        
                              i() =  [0]                           
                                  >= [1]                           
                                  =  n__i()                        
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [7]         
                                  >= [1] V1 + [1] V2 + [7]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                      isNeList(V) =  [1] V + [0]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [7]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [1]           
                                  >= [1] I + [1] P + [1]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [0]                   
                                  >= [1] V + [1]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [0]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [3]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                            nil() =  [0]                           
                                  >= [0]                           
                                  =  n__nil()                      
        
                              o() =  [0]                           
                                  >= [0]                           
                                  =  n__o()                        
        
                              u() =  [1]                           
                                  >= [1]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__o()) -> tt()
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isPal(X)) -> isPal(X)
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n__nil()) -> tt()
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [1]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [2]         
                p(isPal) = [1] x1 + [2]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [1]
                 p(n__a) = [0]                  
                 p(n__e) = [0]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [2]         
               p(n__nil) = [0]                  
                 p(n__o) = [1]                  
                 p(n__u) = [2]                  
                  p(nil) = [4]                  
                    p(o) = [1]                  
                   p(tt) = [0]                  
                    p(u) = [2]                  
        
        Following rules are strictly oriented:
          isList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]         
                               > [1] V1 + [1] V2 + [0]         
                               = and(isList(activate(V1))      
                                    ,n__isList(activate(V2)))  
        
        isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]         
                               > [1] V1 + [1] V2 + [0]         
                               = and(isList(activate(V1))      
                                    ,n__isNeList(activate(V2)))
        
        isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [1]         
                               > [1] V1 + [1] V2 + [0]         
                               = and(isNeList(activate(V1))    
                                    ,n__isList(activate(V2)))  
        
               isPal(n__nil()) = [2]                           
                               > [0]                           
                               = tt()                          
        
                 isQid(n__o()) = [1]                           
                               > [0]                           
                               = tt()                          
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [5]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [2]
                                  >= [1] X + [1] Y + [1] Z + [2]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [5]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [0]                        
                                  >= [0]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  __(X1,X2)                  
        
                 activate(n__a()) =  [0]                        
                                  >= [0]                        
                                  =  a()                        
        
                 activate(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  e()                        
        
                 activate(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  i()                        
        
           activate(n__isList(X)) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  isList(X)                  
        
         activate(n__isNeList(X)) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  isNeList(X)                
        
            activate(n__isPal(X)) =  [1] X + [2]                
                                  >= [1] X + [2]                
                                  =  isPal(X)                   
        
               activate(n__nil()) =  [0]                        
                                  >= [4]                        
                                  =  nil()                      
        
                 activate(n__o()) =  [1]                        
                                  >= [1]                        
                                  =  o()                        
        
                 activate(n__u()) =  [2]                        
                                  >= [2]                        
                                  =  u()                        
        
                      and(tt(),X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  activate(X)                
        
                              e() =  [0]                        
                                  >= [0]                        
                                  =  n__e()                     
        
                              i() =  [0]                        
                                  >= [0]                        
                                  =  n__i()                     
        
                        isList(V) =  [1] V + [0]                
                                  >= [1] V + [0]                
                                  =  isNeList(activate(V))      
        
                        isList(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  n__isList(X)               
        
                 isList(n__nil()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      isNeList(V) =  [1] V + [0]                
                                  >= [1] V + [0]                
                                  =  isQid(activate(V))         
        
                      isNeList(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  n__isNeList(X)             
        
                       isNePal(V) =  [1] V + [2]                
                                  >= [1] V + [0]                
                                  =  isQid(activate(V))         
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [4]        
                                  >= [1] I + [1] P + [2]        
                                  =  and(isQid(activate(I))     
                                        ,n__isPal(activate(P))) 
        
                         isPal(V) =  [1] V + [2]                
                                  >= [1] V + [2]                
                                  =  isNePal(activate(V))       
        
                         isPal(X) =  [1] X + [2]                
                                  >= [1] X + [2]                
                                  =  n__isPal(X)                
        
                    isQid(n__a()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__u()) =  [2]                        
                                  >= [0]                        
                                  =  tt()                       
        
                            nil() =  [4]                        
                                  >= [0]                        
                                  =  n__nil()                   
        
                              o() =  [1]                        
                                  >= [1]                        
                                  =  n__o()                     
        
                              u() =  [2]                        
                                  >= [2]                        
                                  =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isPal(X)) -> isPal(X)
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [4]
                    p(a) = [2]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [4]         
                p(isPal) = [1] x1 + [6]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [0]
                 p(n__a) = [3]                  
                 p(n__e) = [0]                  
                 p(n__i) = [7]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [6]         
               p(n__nil) = [3]                  
                 p(n__o) = [0]                  
                 p(n__u) = [0]                  
                  p(nil) = [3]                  
                    p(o) = [0]                  
                   p(tt) = [0]                  
                    p(u) = [1]                  
        
        Following rules are strictly oriented:
        isPal(V) = [1] V + [6]         
                 > [1] V + [4]         
                 = isNePal(activate(V))
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [7]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [4]         
                                  >= [1] X1 + [1] X2 + [0]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [8]   
                                  >= [1] X + [1] Y + [1] Z + [8]   
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [7]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [2]                           
                                  >= [3]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [3]                           
                                  >= [2]                           
                                  =  a()                           
        
                 activate(n__e()) =  [0]                           
                                  >= [0]                           
                                  =  e()                           
        
                 activate(n__i()) =  [7]                           
                                  >= [0]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [6]                   
                                  >= [1] X + [6]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [3]                           
                                  >= [3]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  o()                           
        
                 activate(n__u()) =  [0]                           
                                  >= [1]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                              e() =  [0]                           
                                  >= [0]                           
                                  =  n__e()                        
        
                              i() =  [0]                           
                                  >= [7]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [3]                           
                                  >= [0]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]         
                                  >= [1] V1 + [1] V2 + [0]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [4]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [8]           
                                  >= [1] I + [1] P + [6]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(X) =  [1] X + [6]                   
                                  >= [1] X + [6]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [9]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [3]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [7]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                            nil() =  [3]                           
                                  >= [3]                           
                                  =  n__nil()                      
        
                              o() =  [0]                           
                                  >= [0]                           
                                  =  n__o()                        
        
                              u() =  [1]                           
                                  >= [0]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isPal(X) -> n__isPal(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isPal(X)) -> isPal(X)
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [7]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [4]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [0]         
             p(isNeList) = [1] x1 + [0]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [6]
                 p(n__a) = [1]                  
                 p(n__e) = [1]                  
                 p(n__i) = [1]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [2]         
             p(n__isPal) = [1] x1 + [2]         
               p(n__nil) = [1]                  
                 p(n__o) = [2]                  
                 p(n__u) = [1]                  
                  p(nil) = [5]                  
                    p(o) = [4]                  
                   p(tt) = [1]                  
                    p(u) = [3]                  
        
        Following rules are strictly oriented:
        activate(n__isNeList(X)) = [1] X + [2]
                                 > [1] X + [0]
                                 = isNeList(X)
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [12]                  
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [7]         
                                  >= [1] X1 + [1] X2 + [6]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [14]  
                                  >= [1] X + [1] Y + [1] Z + [14]  
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [12]                  
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [0]                           
                                  >= [1]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [6]         
                                  >= [1] X1 + [1] X2 + [7]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [1]                           
                                  >= [0]                           
                                  =  a()                           
        
                 activate(n__e()) =  [1]                           
                                  >= [0]                           
                                  =  e()                           
        
                 activate(n__i()) =  [1]                           
                                  >= [0]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isList(X)                     
        
            activate(n__isPal(X)) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [1]                           
                                  >= [5]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [2]                           
                                  >= [4]                           
                                  =  o()                           
        
                 activate(n__u()) =  [1]                           
                                  >= [3]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [5]                   
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                              e() =  [0]                           
                                  >= [1]                           
                                  =  n__e()                        
        
                              i() =  [0]                           
                                  >= [1]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                  >= [1] V1 + [1] V2 + [4]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [0]                   
                                  >= [1] X + [2]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                  >= [1] V1 + [1] V2 + [6]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                  >= [1] V1 + [1] V2 + [4]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [13]          
                                  >= [1] I + [1] P + [6]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [0]                   
                                  >= [1] X + [2]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                            nil() =  [5]                           
                                  >= [1]                           
                                  =  n__nil()                      
        
                              o() =  [4]                           
                                  >= [2]                           
                                  =  n__o()                        
        
                              u() =  [3]                           
                                  >= [1]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isPal(X) -> n__isPal(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [2]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [0]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [0]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [1]         
             p(isNeList) = [1] x1 + [1]         
              p(isNePal) = [1] x1 + [0]         
                p(isPal) = [1] x1 + [0]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [1]
                 p(n__a) = [0]                  
                 p(n__e) = [0]                  
                 p(n__i) = [0]                  
            p(n__isList) = [1] x1 + [1]         
          p(n__isNeList) = [1] x1 + [1]         
             p(n__isPal) = [1] x1 + [0]         
               p(n__nil) = [0]                  
                 p(n__o) = [0]                  
                 p(n__u) = [0]                  
                  p(nil) = [0]                  
                    p(o) = [0]                  
                   p(tt) = [0]                  
                    p(u) = [0]                  
        
        Following rules are strictly oriented:
        isNeList(V) = [1] V + [1]       
                    > [1] V + [0]       
                    = isQid(activate(V))
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [2]         
                                  >= [1] X1 + [1] X2 + [1]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [4]   
                                  >= [1] X + [1] Y + [1] Z + [4]   
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [0]                           
                                  >= [0]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [1]         
                                  >= [1] X1 + [1] X2 + [2]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [0]                           
                                  >= [0]                           
                                  =  a()                           
        
                 activate(n__e()) =  [0]                           
                                  >= [0]                           
                                  =  e()                           
        
                 activate(n__i()) =  [0]                           
                                  >= [0]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  o()                           
        
                 activate(n__u()) =  [0]                           
                                  >= [0]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  activate(X)                   
        
                              e() =  [0]                           
                                  >= [0]                           
                                  =  n__e()                        
        
                              i() =  [0]                           
                                  >= [0]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [2]         
                                  >= [1] V1 + [1] V2 + [2]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [1]                           
                                  >= [0]                           
                                  =  tt()                          
        
                      isNeList(X) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [2]         
                                  >= [1] V1 + [1] V2 + [2]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [2]         
                                  >= [1] V1 + [1] V2 + [2]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [3]           
                                  >= [1] I + [1] P + [0]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [0]                   
                                  >= [1] V + [0]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [0]                   
                                  >= [1] X + [0]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [0]                           
                                  >= [0]                           
                                  =  tt()                          
        
                            nil() =  [0]                           
                                  >= [0]                           
                                  =  n__nil()                      
        
                              o() =  [0]                           
                                  >= [0]                           
                                  =  n__o()                        
        
                              u() =  [0]                           
                                  >= [0]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__isList(X)) -> isList(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isNeList(X) -> n__isNeList(X)
        isPal(X) -> n__isPal(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        and(tt(),X) -> activate(X)
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [3]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [1]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [3]                  
                    p(i) = [0]                  
               p(isList) = [1] x1 + [2]         
             p(isNeList) = [1] x1 + [1]         
              p(isNePal) = [1] x1 + [1]         
                p(isPal) = [1] x1 + [2]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [3]
                 p(n__a) = [1]                  
                 p(n__e) = [2]                  
                 p(n__i) = [2]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [2]         
               p(n__nil) = [0]                  
                 p(n__o) = [2]                  
                 p(n__u) = [3]                  
                  p(nil) = [0]                  
                    p(o) = [2]                  
                   p(tt) = [1]                  
                    p(u) = [3]                  
        
        Following rules are strictly oriented:
                   activate(X) = [1] X + [1]          
                               > [1] X + [0]          
                               = X                    
        
        activate(n____(X1,X2)) = [1] X1 + [1] X2 + [4]
                               > [1] X1 + [1] X2 + [3]
                               = __(X1,X2)            
        
            activate(n__nil()) = [1]                  
                               > [0]                  
                               = nil()                
        
              activate(n__o()) = [3]                  
                               > [2]                  
                               = o()                  
        
              activate(n__u()) = [4]                  
                               > [3]                  
                               = u()                  
        
                           e() = [3]                  
                               > [2]                  
                               = n__e()               
        
                   isNeList(X) = [1] X + [1]          
                               > [1] X + [0]          
                               = n__isNeList(X)       
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [3]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [3]         
                                  >= [1] X1 + [1] X2 + [3]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [6]   
                                  >= [1] X + [1] Y + [1] Z + [6]   
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [3]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [0]                           
                                  >= [1]                           
                                  =  n__a()                        
        
                 activate(n__a()) =  [2]                           
                                  >= [0]                           
                                  =  a()                           
        
                 activate(n__e()) =  [3]                           
                                  >= [3]                           
                                  =  e()                           
        
                 activate(n__i()) =  [3]                           
                                  >= [0]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [1]                   
                                  >= [1] X + [2]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [3]                   
                                  >= [1] X + [2]                   
                                  =  isPal(X)                      
        
                      and(tt(),X) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  activate(X)                   
        
                              i() =  [0]                           
                                  >= [2]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [2]                   
                                  >= [1] V + [2]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]         
                                  >= [1] V1 + [1] V2 + [4]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]         
                                  >= [1] V1 + [1] V2 + [4]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]         
                                  >= [1] V1 + [1] V2 + [3]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [7]           
                                  >= [1] I + [1] P + [4]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [2]                   
                                  >= [1] V + [2]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [2]                   
                                  >= [1] X + [2]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [1]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [3]                           
                                  >= [1]                           
                                  =  tt()                          
        
                            nil() =  [0]                           
                                  >= [0]                           
                                  =  n__nil()                      
        
                              o() =  [2]                           
                                  >= [2]                           
                                  =  n__o()                        
        
                              u() =  [3]                           
                                  >= [3]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(n__isList(X)) -> isList(X)
        i() -> n__i()
        isPal(X) -> n__isPal(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [5]
                    p(a) = [0]                  
             p(activate) = [1] x1 + [1]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [4]                  
                    p(i) = [7]                  
               p(isList) = [1] x1 + [4]         
             p(isNeList) = [1] x1 + [1]         
              p(isNePal) = [1] x1 + [2]         
                p(isPal) = [1] x1 + [3]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [5]
                 p(n__a) = [4]                  
                 p(n__e) = [4]                  
                 p(n__i) = [6]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [2]         
               p(n__nil) = [1]                  
                 p(n__o) = [6]                  
                 p(n__u) = [7]                  
                  p(nil) = [1]                  
                    p(o) = [6]                  
                   p(tt) = [4]                  
                    p(u) = [7]                  
        
        Following rules are strictly oriented:
             i() = [7]        
                 > [6]        
                 = n__i()     
        
        isPal(X) = [1] X + [3]
                 > [1] X + [2]
                 = n__isPal(X)
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [6]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [5]         
                                  >= [1] X1 + [1] X2 + [5]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [10]  
                                  >= [1] X + [1] Y + [1] Z + [10]  
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [6]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [0]                           
                                  >= [4]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [1]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [6]         
                                  >= [1] X1 + [1] X2 + [5]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [5]                           
                                  >= [0]                           
                                  =  a()                           
        
                 activate(n__e()) =  [5]                           
                                  >= [4]                           
                                  =  e()                           
        
                 activate(n__i()) =  [7]                           
                                  >= [7]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [1]                   
                                  >= [1] X + [4]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [3]                   
                                  >= [1] X + [3]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [2]                           
                                  >= [1]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [7]                           
                                  >= [6]                           
                                  =  o()                           
        
                 activate(n__u()) =  [8]                           
                                  >= [7]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [4]                   
                                  >= [1] X + [1]                   
                                  =  activate(X)                   
        
                              e() =  [4]                           
                                  >= [4]                           
                                  =  n__e()                        
        
                        isList(V) =  [1] V + [4]                   
                                  >= [1] V + [2]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [4]                   
                                  >= [1] X + [0]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]         
                                  >= [1] V1 + [1] V2 + [6]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [5]                           
                                  >= [4]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [1]                   
                                  >= [1] X + [0]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                  >= [1] V1 + [1] V2 + [6]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                  >= [1] V1 + [1] V2 + [3]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [2]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [12]          
                                  >= [1] I + [1] P + [4]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [3]                   
                                  >= [1] V + [3]                   
                                  =  isNePal(activate(V))          
        
                  isPal(n__nil()) =  [4]                           
                                  >= [4]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [4]                           
                                  >= [4]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [4]                           
                                  >= [4]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [6]                           
                                  >= [4]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [6]                           
                                  >= [4]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [7]                           
                                  >= [4]                           
                                  =  tt()                          
        
                            nil() =  [1]                           
                                  >= [1]                           
                                  =  n__nil()                      
        
                              o() =  [6]                           
                                  >= [6]                           
                                  =  n__o()                        
        
                              u() =  [7]                           
                                  >= [7]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(n__isList(X)) -> isList(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [5]
                    p(a) = [5]                  
             p(activate) = [1] x1 + [1]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [6]                  
                    p(i) = [4]                  
               p(isList) = [1] x1 + [2]         
             p(isNeList) = [1] x1 + [1]         
              p(isNePal) = [1] x1 + [3]         
                p(isPal) = [1] x1 + [4]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [4]
                 p(n__a) = [4]                  
                 p(n__e) = [5]                  
                 p(n__i) = [4]                  
            p(n__isList) = [1] x1 + [0]         
          p(n__isNeList) = [1] x1 + [1]         
             p(n__isPal) = [1] x1 + [4]         
               p(n__nil) = [2]                  
                 p(n__o) = [2]                  
                 p(n__u) = [2]                  
                  p(nil) = [2]                  
                    p(o) = [2]                  
                   p(tt) = [1]                  
                    p(u) = [3]                  
        
        Following rules are strictly oriented:
        a() = [5]   
            > [4]   
            = n__a()
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [7]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [5]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [10]  
                                  >= [1] X + [1] Y + [1] Z + [10]  
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [7]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                      activate(X) =  [1] X + [1]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [5]         
                                  >= [1] X1 + [1] X2 + [5]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [5]                           
                                  >= [5]                           
                                  =  a()                           
        
                 activate(n__e()) =  [6]                           
                                  >= [6]                           
                                  =  e()                           
        
                 activate(n__i()) =  [5]                           
                                  >= [4]                           
                                  =  i()                           
        
           activate(n__isList(X)) =  [1] X + [1]                   
                                  >= [1] X + [2]                   
                                  =  isList(X)                     
        
         activate(n__isNeList(X)) =  [1] X + [2]                   
                                  >= [1] X + [1]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [5]                   
                                  >= [1] X + [4]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [3]                           
                                  >= [2]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [3]                           
                                  >= [2]                           
                                  =  o()                           
        
                 activate(n__u()) =  [3]                           
                                  >= [3]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  activate(X)                   
        
                              e() =  [6]                           
                                  >= [5]                           
                                  =  n__e()                        
        
                              i() =  [4]                           
                                  >= [4]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [2]                   
                                  >= [1] V + [2]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [2]                   
                                  >= [1] X + [0]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                  >= [1] V1 + [1] V2 + [4]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [4]                           
                                  >= [1]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]         
                                  >= [1] V1 + [1] V2 + [5]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]         
                                  >= [1] V1 + [1] V2 + [3]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [3]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [12]          
                                  >= [1] I + [1] P + [6]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [4]                   
                                  >= [1] V + [4]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [4]                   
                                  >= [1] X + [4]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [6]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [4]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [5]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [4]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                            nil() =  [2]                           
                                  >= [2]                           
                                  =  n__nil()                      
        
                              o() =  [2]                           
                                  >= [2]                           
                                  =  n__o()                        
        
                              u() =  [3]                           
                                  >= [2]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        activate(n__isList(X)) -> isList(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(and) = {1,2},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2},
          uargs(n__isList) = {1},
          uargs(n__isNeList) = {1},
          uargs(n__isPal) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                   p(__) = [1] x1 + [1] x2 + [5]
                    p(a) = [2]                  
             p(activate) = [1] x1 + [1]         
                  p(and) = [1] x1 + [1] x2 + [0]
                    p(e) = [2]                  
                    p(i) = [4]                  
               p(isList) = [1] x1 + [2]         
             p(isNeList) = [1] x1 + [1]         
              p(isNePal) = [1] x1 + [1]         
                p(isPal) = [1] x1 + [5]         
                p(isQid) = [1] x1 + [0]         
                p(n____) = [1] x1 + [1] x2 + [4]
                 p(n__a) = [2]                  
                 p(n__e) = [2]                  
                 p(n__i) = [4]                  
            p(n__isList) = [1] x1 + [2]         
          p(n__isNeList) = [1] x1 + [0]         
             p(n__isPal) = [1] x1 + [5]         
               p(n__nil) = [4]                  
                 p(n__o) = [2]                  
                 p(n__u) = [3]                  
                  p(nil) = [4]                  
                    p(o) = [2]                  
                   p(tt) = [1]                  
                    p(u) = [4]                  
        
        Following rules are strictly oriented:
        activate(n__isList(X)) = [1] X + [3]
                               > [1] X + [2]
                               = isList(X)  
        
        
        Following rules are (at-least) weakly oriented:
                      __(X,nil()) =  [1] X + [9]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [5]         
                                  >= [1] X1 + [1] X2 + [4]         
                                  =  n____(X1,X2)                  
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [10]  
                                  >= [1] X + [1] Y + [1] Z + [10]  
                                  =  __(X,__(Y,Z))                 
        
                      __(nil(),X) =  [1] X + [9]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
                              a() =  [2]                           
                                  >= [2]                           
                                  =  n__a()                        
        
                      activate(X) =  [1] X + [1]                   
                                  >= [1] X + [0]                   
                                  =  X                             
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [5]         
                                  >= [1] X1 + [1] X2 + [5]         
                                  =  __(X1,X2)                     
        
                 activate(n__a()) =  [3]                           
                                  >= [2]                           
                                  =  a()                           
        
                 activate(n__e()) =  [3]                           
                                  >= [2]                           
                                  =  e()                           
        
                 activate(n__i()) =  [5]                           
                                  >= [4]                           
                                  =  i()                           
        
         activate(n__isNeList(X)) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  isNeList(X)                   
        
            activate(n__isPal(X)) =  [1] X + [6]                   
                                  >= [1] X + [5]                   
                                  =  isPal(X)                      
        
               activate(n__nil()) =  [5]                           
                                  >= [4]                           
                                  =  nil()                         
        
                 activate(n__o()) =  [3]                           
                                  >= [2]                           
                                  =  o()                           
        
                 activate(n__u()) =  [4]                           
                                  >= [4]                           
                                  =  u()                           
        
                      and(tt(),X) =  [1] X + [1]                   
                                  >= [1] X + [1]                   
                                  =  activate(X)                   
        
                              e() =  [2]                           
                                  >= [2]                           
                                  =  n__e()                        
        
                              i() =  [4]                           
                                  >= [4]                           
                                  =  n__i()                        
        
                        isList(V) =  [1] V + [2]                   
                                  >= [1] V + [2]                   
                                  =  isNeList(activate(V))         
        
                        isList(X) =  [1] X + [2]                   
                                  >= [1] X + [2]                   
                                  =  n__isList(X)                  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]         
                                  >= [1] V1 + [1] V2 + [6]         
                                  =  and(isList(activate(V1))      
                                        ,n__isList(activate(V2)))  
        
                 isList(n__nil()) =  [6]                           
                                  >= [1]                           
                                  =  tt()                          
        
                      isNeList(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
                      isNeList(X) =  [1] X + [1]                   
                                  >= [1] X + [0]                   
                                  =  n__isNeList(X)                
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]         
                                  >= [1] V1 + [1] V2 + [4]         
                                  =  and(isList(activate(V1))      
                                        ,n__isNeList(activate(V2)))
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]         
                                  >= [1] V1 + [1] V2 + [5]         
                                  =  and(isNeList(activate(V1))    
                                        ,n__isList(activate(V2)))  
        
                       isNePal(V) =  [1] V + [1]                   
                                  >= [1] V + [1]                   
                                  =  isQid(activate(V))            
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [10]          
                                  >= [1] I + [1] P + [7]           
                                  =  and(isQid(activate(I))        
                                        ,n__isPal(activate(P)))    
        
                         isPal(V) =  [1] V + [5]                   
                                  >= [1] V + [2]                   
                                  =  isNePal(activate(V))          
        
                         isPal(X) =  [1] X + [5]                   
                                  >= [1] X + [5]                   
                                  =  n__isPal(X)                   
        
                  isPal(n__nil()) =  [9]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__a()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__e()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__i()) =  [4]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__o()) =  [2]                           
                                  >= [1]                           
                                  =  tt()                          
        
                    isQid(n__u()) =  [3]                           
                                  >= [1]                           
                                  =  tt()                          
        
                            nil() =  [4]                           
                                  >= [4]                           
                                  =  n__nil()                      
        
                              o() =  [2]                           
                                  >= [2]                           
                                  =  n__o()                        
        
                              u() =  [4]                           
                                  >= [3]                           
                                  =  n__u()                        
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^2))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(__) = {2},
        uargs(activate) = {1},
        uargs(and) = {1,2},
        uargs(isList) = {1},
        uargs(isNeList) = {1},
        uargs(isNePal) = {1},
        uargs(isPal) = {1},
        uargs(isQid) = {1},
        uargs(n____) = {2},
        uargs(n__isList) = {1},
        uargs(n__isNeList) = {1},
        uargs(n__isPal) = {1}
      
      Following symbols are considered usable:
        {}
      TcT has computed the following interpretation:
                 p(__) = [1 4] x1 + [1 0] x2 + [0]
                         [0 1]      [0 1]      [1]
                  p(a) = [1]                      
                         [1]                      
           p(activate) = [1 0] x1 + [0]           
                         [0 4]      [0]           
                p(and) = [1 0] x1 + [1 0] x2 + [0]
                         [0 0]      [0 4]      [0]
                  p(e) = [1]                      
                         [4]                      
                  p(i) = [2]                      
                         [3]                      
             p(isList) = [1 0] x1 + [0]           
                         [0 0]      [4]           
           p(isNeList) = [1 0] x1 + [0]           
                         [0 0]      [4]           
            p(isNePal) = [1 0] x1 + [0]           
                         [0 0]      [4]           
              p(isPal) = [1 0] x1 + [0]           
                         [0 0]      [4]           
              p(isQid) = [1 0] x1 + [0]           
                         [0 0]      [4]           
              p(n____) = [1 4] x1 + [1 0] x2 + [0]
                         [0 1]      [0 1]      [1]
               p(n__a) = [1]                      
                         [1]                      
               p(n__e) = [1]                      
                         [1]                      
               p(n__i) = [2]                      
                         [3]                      
          p(n__isList) = [1 0] x1 + [0]           
                         [0 0]      [1]           
        p(n__isNeList) = [1 0] x1 + [0]           
                         [0 0]      [1]           
           p(n__isPal) = [1 0] x1 + [0]           
                         [0 0]      [1]           
             p(n__nil) = [0]                      
                         [0]                      
               p(n__o) = [0]                      
                         [2]                      
               p(n__u) = [4]                      
                         [1]                      
                p(nil) = [0]                      
                         [0]                      
                  p(o) = [0]                      
                         [4]                      
                 p(tt) = [0]                      
                         [4]                      
                  p(u) = [4]                      
                         [4]                      
      
      Following rules are strictly oriented:
      __(__(X,Y),Z) = [1 8] X + [1 4] Y + [1
                      0] Z + [4]            
                      [0 1]     [0 1]     [0
                      1]     [2]            
                    > [1 4] X + [1 4] Y + [1
                      0] Z + [0]            
                      [0 1]     [0 1]     [0
                      1]     [2]            
                    = __(X,__(Y,Z))         
      
      
      Following rules are (at-least) weakly oriented:
                    __(X,nil()) =  [1 4] X + [0]                 
                                   [0 1]     [1]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
      
                      __(X1,X2) =  [1 4] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [1]     
                                >= [1 4] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [1]     
                                =  n____(X1,X2)                  
      
                    __(nil(),X) =  [1 0] X + [0]                 
                                   [0 1]     [1]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
      
                            a() =  [1]                           
                                   [1]                           
                                >= [1]                           
                                   [1]                           
                                =  n__a()                        
      
                    activate(X) =  [1 0] X + [0]                 
                                   [0 4]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 1]     [0]                 
                                =  X                             
      
         activate(n____(X1,X2)) =  [1 4] X1 + [1 0] X2 + [0]     
                                   [0 4]      [0 4]      [4]     
                                >= [1 4] X1 + [1 0] X2 + [0]     
                                   [0 1]      [0 1]      [1]     
                                =  __(X1,X2)                     
      
               activate(n__a()) =  [1]                           
                                   [4]                           
                                >= [1]                           
                                   [1]                           
                                =  a()                           
      
               activate(n__e()) =  [1]                           
                                   [4]                           
                                >= [1]                           
                                   [4]                           
                                =  e()                           
      
               activate(n__i()) =  [2]                           
                                   [12]                          
                                >= [2]                           
                                   [3]                           
                                =  i()                           
      
         activate(n__isList(X)) =  [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                =  isList(X)                     
      
       activate(n__isNeList(X)) =  [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                =  isNeList(X)                   
      
          activate(n__isPal(X)) =  [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                =  isPal(X)                      
      
             activate(n__nil()) =  [0]                           
                                   [0]                           
                                >= [0]                           
                                   [0]                           
                                =  nil()                         
      
               activate(n__o()) =  [0]                           
                                   [8]                           
                                >= [0]                           
                                   [4]                           
                                =  o()                           
      
               activate(n__u()) =  [4]                           
                                   [4]                           
                                >= [4]                           
                                   [4]                           
                                =  u()                           
      
                    and(tt(),X) =  [1 0] X + [0]                 
                                   [0 4]     [0]                 
                                >= [1 0] X + [0]                 
                                   [0 4]     [0]                 
                                =  activate(X)                   
      
                            e() =  [1]                           
                                   [4]                           
                                >= [1]                           
                                   [1]                           
                                =  n__e()                        
      
                            i() =  [2]                           
                                   [3]                           
                                >= [2]                           
                                   [3]                           
                                =  n__i()                        
      
                      isList(V) =  [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                =  isNeList(activate(V))         
      
                      isList(X) =  [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [1]                 
                                =  n__isList(X)                  
      
           isList(n____(V1,V2)) =  [1 4] V1 + [1 0] V2 + [0]     
                                   [0 0]      [0 0]      [4]     
                                >= [1 0] V1 + [1 0] V2 + [0]     
                                   [0 0]      [0 0]      [4]     
                                =  and(isList(activate(V1))      
                                      ,n__isList(activate(V2)))  
      
               isList(n__nil()) =  [0]                           
                                   [4]                           
                                >= [0]                           
                                   [4]                           
                                =  tt()                          
      
                    isNeList(V) =  [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                =  isQid(activate(V))            
      
                    isNeList(X) =  [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [1]                 
                                =  n__isNeList(X)                
      
         isNeList(n____(V1,V2)) =  [1 4] V1 + [1 0] V2 + [0]     
                                   [0 0]      [0 0]      [4]     
                                >= [1 0] V1 + [1 0] V2 + [0]     
                                   [0 0]      [0 0]      [4]     
                                =  and(isList(activate(V1))      
                                      ,n__isNeList(activate(V2)))
      
         isNeList(n____(V1,V2)) =  [1 4] V1 + [1 0] V2 + [0]     
                                   [0 0]      [0 0]      [4]     
                                >= [1 0] V1 + [1 0] V2 + [0]     
                                   [0 0]      [0 0]      [4]     
                                =  and(isNeList(activate(V1))    
                                      ,n__isList(activate(V2)))  
      
                     isNePal(V) =  [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                =  isQid(activate(V))            
      
      isNePal(n____(I,__(P,I))) =  [2 4] I + [1 4] P + [0]       
                                   [0 0]     [0 0]     [4]       
                                >= [1 0] I + [1 0] P + [0]       
                                   [0 0]     [0 0]     [4]       
                                =  and(isQid(activate(I))        
                                      ,n__isPal(activate(P)))    
      
                       isPal(V) =  [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] V + [0]                 
                                   [0 0]     [4]                 
                                =  isNePal(activate(V))          
      
                       isPal(X) =  [1 0] X + [0]                 
                                   [0 0]     [4]                 
                                >= [1 0] X + [0]                 
                                   [0 0]     [1]                 
                                =  n__isPal(X)                   
      
                isPal(n__nil()) =  [0]                           
                                   [4]                           
                                >= [0]                           
                                   [4]                           
                                =  tt()                          
      
                  isQid(n__a()) =  [1]                           
                                   [4]                           
                                >= [0]                           
                                   [4]                           
                                =  tt()                          
      
                  isQid(n__e()) =  [1]                           
                                   [4]                           
                                >= [0]                           
                                   [4]                           
                                =  tt()                          
      
                  isQid(n__i()) =  [2]                           
                                   [4]                           
                                >= [0]                           
                                   [4]                           
                                =  tt()                          
      
                  isQid(n__o()) =  [0]                           
                                   [4]                           
                                >= [0]                           
                                   [4]                           
                                =  tt()                          
      
                  isQid(n__u()) =  [4]                           
                                   [4]                           
                                >= [0]                           
                                   [4]                           
                                =  tt()                          
      
                          nil() =  [0]                           
                                   [0]                           
                                >= [0]                           
                                   [0]                           
                                =  n__nil()                      
      
                            o() =  [0]                           
                                   [4]                           
                                >= [0]                           
                                   [2]                           
                                =  n__o()                        
      
                            u() =  [4]                           
                                   [4]                           
                                >= [4]                           
                                   [1]                           
                                =  n__u()                        
      
*** 1.1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__isList(X)) -> isList(X)
        activate(n__isNeList(X)) -> isNeList(X)
        activate(n__isPal(X)) -> isPal(X)
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        and(tt(),X) -> activate(X)
        e() -> n__e()
        i() -> n__i()
        isList(V) -> isNeList(activate(V))
        isList(X) -> n__isList(X)
        isList(n____(V1,V2)) -> and(isList(activate(V1)),n__isList(activate(V2)))
        isList(n__nil()) -> tt()
        isNeList(V) -> isQid(activate(V))
        isNeList(X) -> n__isNeList(X)
        isNeList(n____(V1,V2)) -> and(isList(activate(V1)),n__isNeList(activate(V2)))
        isNeList(n____(V1,V2)) -> and(isNeList(activate(V1)),n__isList(activate(V2)))
        isNePal(V) -> isQid(activate(V))
        isNePal(n____(I,__(P,I))) -> and(isQid(activate(I)),n__isPal(activate(P)))
        isPal(V) -> isNePal(activate(V))
        isPal(X) -> n__isPal(X)
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {__/2,a/0,activate/1,and/2,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__isList/1,n__isNeList/1,n__isPal/1,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {__,a,activate,and,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__isList,n__isNeList,n__isPal,n__nil,n__o,n__u,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).