*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(X1,mark(X2)) -> mark(__(X1,X2))
        __(mark(X1),X2) -> mark(__(X1,X2))
        __(ok(X1),ok(X2)) -> ok(__(X1,X2))
        active(__(X,nil())) -> mark(X)
        active(__(X1,X2)) -> __(X1,active(X2))
        active(__(X1,X2)) -> __(active(X1),X2)
        active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
        active(__(nil(),X)) -> mark(X)
        active(and(X1,X2)) -> and(active(X1),X2)
        active(and(tt(),X)) -> mark(X)
        active(isList(V)) -> mark(isNeList(V))
        active(isList(__(V1,V2))) -> mark(and(isList(V1),isList(V2)))
        active(isList(nil())) -> mark(tt())
        active(isNeList(V)) -> mark(isQid(V))
        active(isNeList(__(V1,V2))) -> mark(and(isList(V1),isNeList(V2)))
        active(isNeList(__(V1,V2))) -> mark(and(isNeList(V1),isList(V2)))
        active(isNePal(V)) -> mark(isQid(V))
        active(isNePal(__(I,__(P,I)))) -> mark(and(isQid(I),isPal(P)))
        active(isPal(V)) -> mark(isNePal(V))
        active(isPal(nil())) -> mark(tt())
        active(isQid(a())) -> mark(tt())
        active(isQid(e())) -> mark(tt())
        active(isQid(i())) -> mark(tt())
        active(isQid(o())) -> mark(tt())
        active(isQid(u())) -> mark(tt())
        and(mark(X1),X2) -> mark(and(X1,X2))
        and(ok(X1),ok(X2)) -> ok(and(X1,X2))
        isList(ok(X)) -> ok(isList(X))
        isNeList(ok(X)) -> ok(isNeList(X))
        isNePal(ok(X)) -> ok(isNePal(X))
        isPal(ok(X)) -> ok(isPal(X))
        isQid(ok(X)) -> ok(isQid(X))
        proper(__(X1,X2)) -> __(proper(X1),proper(X2))
        proper(a()) -> ok(a())
        proper(and(X1,X2)) -> and(proper(X1),proper(X2))
        proper(e()) -> ok(e())
        proper(i()) -> ok(i())
        proper(isList(X)) -> isList(proper(X))
        proper(isNeList(X)) -> isNeList(proper(X))
        proper(isNePal(X)) -> isNePal(proper(X))
        proper(isPal(X)) -> isPal(proper(X))
        proper(isQid(X)) -> isQid(proper(X))
        proper(nil()) -> ok(nil())
        proper(o()) -> ok(o())
        proper(tt()) -> ok(tt())
        proper(u()) -> ok(u())
        top(mark(X)) -> top(proper(X))
        top(ok(X)) -> top(active(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {__/2,active/1,and/2,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,proper/1,top/1} / {a/0,e/0,i/0,mark/1,nil/0,o/0,ok/1,tt/0,u/0}
      Obligation:
        Full
        basic terms: {__,active,and,isList,isNeList,isNePal,isPal,isQid,proper,top}/{a,e,i,mark,nil,o,ok,tt,u}
    Applied Processor:
      Bounds {initialAutomaton = perSymbol, enrichment = match}
    Proof:
      The problem is match-bounded by 2.
      The enriched problem is compatible with follwoing automaton.
        ___0(2,2) -> 1
        ___0(2,5) -> 1
        ___0(2,6) -> 1
        ___0(2,12) -> 1
        ___0(2,13) -> 1
        ___0(2,14) -> 1
        ___0(2,15) -> 1
        ___0(2,18) -> 1
        ___0(2,19) -> 1
        ___0(5,2) -> 1
        ___0(5,5) -> 1
        ___0(5,6) -> 1
        ___0(5,12) -> 1
        ___0(5,13) -> 1
        ___0(5,14) -> 1
        ___0(5,15) -> 1
        ___0(5,18) -> 1
        ___0(5,19) -> 1
        ___0(6,2) -> 1
        ___0(6,5) -> 1
        ___0(6,6) -> 1
        ___0(6,12) -> 1
        ___0(6,13) -> 1
        ___0(6,14) -> 1
        ___0(6,15) -> 1
        ___0(6,18) -> 1
        ___0(6,19) -> 1
        ___0(12,2) -> 1
        ___0(12,5) -> 1
        ___0(12,6) -> 1
        ___0(12,12) -> 1
        ___0(12,13) -> 1
        ___0(12,14) -> 1
        ___0(12,15) -> 1
        ___0(12,18) -> 1
        ___0(12,19) -> 1
        ___0(13,2) -> 1
        ___0(13,5) -> 1
        ___0(13,6) -> 1
        ___0(13,12) -> 1
        ___0(13,13) -> 1
        ___0(13,14) -> 1
        ___0(13,15) -> 1
        ___0(13,18) -> 1
        ___0(13,19) -> 1
        ___0(14,2) -> 1
        ___0(14,5) -> 1
        ___0(14,6) -> 1
        ___0(14,12) -> 1
        ___0(14,13) -> 1
        ___0(14,14) -> 1
        ___0(14,15) -> 1
        ___0(14,18) -> 1
        ___0(14,19) -> 1
        ___0(15,2) -> 1
        ___0(15,5) -> 1
        ___0(15,6) -> 1
        ___0(15,12) -> 1
        ___0(15,13) -> 1
        ___0(15,14) -> 1
        ___0(15,15) -> 1
        ___0(15,18) -> 1
        ___0(15,19) -> 1
        ___0(18,2) -> 1
        ___0(18,5) -> 1
        ___0(18,6) -> 1
        ___0(18,12) -> 1
        ___0(18,13) -> 1
        ___0(18,14) -> 1
        ___0(18,15) -> 1
        ___0(18,18) -> 1
        ___0(18,19) -> 1
        ___0(19,2) -> 1
        ___0(19,5) -> 1
        ___0(19,6) -> 1
        ___0(19,12) -> 1
        ___0(19,13) -> 1
        ___0(19,14) -> 1
        ___0(19,15) -> 1
        ___0(19,18) -> 1
        ___0(19,19) -> 1
        ___1(2,2) -> 20
        ___1(2,5) -> 20
        ___1(2,6) -> 20
        ___1(2,12) -> 20
        ___1(2,13) -> 20
        ___1(2,14) -> 20
        ___1(2,15) -> 20
        ___1(2,18) -> 20
        ___1(2,19) -> 20
        ___1(5,2) -> 20
        ___1(5,5) -> 20
        ___1(5,6) -> 20
        ___1(5,12) -> 20
        ___1(5,13) -> 20
        ___1(5,14) -> 20
        ___1(5,15) -> 20
        ___1(5,18) -> 20
        ___1(5,19) -> 20
        ___1(6,2) -> 20
        ___1(6,5) -> 20
        ___1(6,6) -> 20
        ___1(6,12) -> 20
        ___1(6,13) -> 20
        ___1(6,14) -> 20
        ___1(6,15) -> 20
        ___1(6,18) -> 20
        ___1(6,19) -> 20
        ___1(12,2) -> 20
        ___1(12,5) -> 20
        ___1(12,6) -> 20
        ___1(12,12) -> 20
        ___1(12,13) -> 20
        ___1(12,14) -> 20
        ___1(12,15) -> 20
        ___1(12,18) -> 20
        ___1(12,19) -> 20
        ___1(13,2) -> 20
        ___1(13,5) -> 20
        ___1(13,6) -> 20
        ___1(13,12) -> 20
        ___1(13,13) -> 20
        ___1(13,14) -> 20
        ___1(13,15) -> 20
        ___1(13,18) -> 20
        ___1(13,19) -> 20
        ___1(14,2) -> 20
        ___1(14,5) -> 20
        ___1(14,6) -> 20
        ___1(14,12) -> 20
        ___1(14,13) -> 20
        ___1(14,14) -> 20
        ___1(14,15) -> 20
        ___1(14,18) -> 20
        ___1(14,19) -> 20
        ___1(15,2) -> 20
        ___1(15,5) -> 20
        ___1(15,6) -> 20
        ___1(15,12) -> 20
        ___1(15,13) -> 20
        ___1(15,14) -> 20
        ___1(15,15) -> 20
        ___1(15,18) -> 20
        ___1(15,19) -> 20
        ___1(18,2) -> 20
        ___1(18,5) -> 20
        ___1(18,6) -> 20
        ___1(18,12) -> 20
        ___1(18,13) -> 20
        ___1(18,14) -> 20
        ___1(18,15) -> 20
        ___1(18,18) -> 20
        ___1(18,19) -> 20
        ___1(19,2) -> 20
        ___1(19,5) -> 20
        ___1(19,6) -> 20
        ___1(19,12) -> 20
        ___1(19,13) -> 20
        ___1(19,14) -> 20
        ___1(19,15) -> 20
        ___1(19,18) -> 20
        ___1(19,19) -> 20
        a_0() -> 2
        a_1() -> 27
        active_0(2) -> 3
        active_0(5) -> 3
        active_0(6) -> 3
        active_0(12) -> 3
        active_0(13) -> 3
        active_0(14) -> 3
        active_0(15) -> 3
        active_0(18) -> 3
        active_0(19) -> 3
        active_1(2) -> 28
        active_1(5) -> 28
        active_1(6) -> 28
        active_1(12) -> 28
        active_1(13) -> 28
        active_1(14) -> 28
        active_1(15) -> 28
        active_1(18) -> 28
        active_1(19) -> 28
        active_2(27) -> 29
        and_0(2,2) -> 4
        and_0(2,5) -> 4
        and_0(2,6) -> 4
        and_0(2,12) -> 4
        and_0(2,13) -> 4
        and_0(2,14) -> 4
        and_0(2,15) -> 4
        and_0(2,18) -> 4
        and_0(2,19) -> 4
        and_0(5,2) -> 4
        and_0(5,5) -> 4
        and_0(5,6) -> 4
        and_0(5,12) -> 4
        and_0(5,13) -> 4
        and_0(5,14) -> 4
        and_0(5,15) -> 4
        and_0(5,18) -> 4
        and_0(5,19) -> 4
        and_0(6,2) -> 4
        and_0(6,5) -> 4
        and_0(6,6) -> 4
        and_0(6,12) -> 4
        and_0(6,13) -> 4
        and_0(6,14) -> 4
        and_0(6,15) -> 4
        and_0(6,18) -> 4
        and_0(6,19) -> 4
        and_0(12,2) -> 4
        and_0(12,5) -> 4
        and_0(12,6) -> 4
        and_0(12,12) -> 4
        and_0(12,13) -> 4
        and_0(12,14) -> 4
        and_0(12,15) -> 4
        and_0(12,18) -> 4
        and_0(12,19) -> 4
        and_0(13,2) -> 4
        and_0(13,5) -> 4
        and_0(13,6) -> 4
        and_0(13,12) -> 4
        and_0(13,13) -> 4
        and_0(13,14) -> 4
        and_0(13,15) -> 4
        and_0(13,18) -> 4
        and_0(13,19) -> 4
        and_0(14,2) -> 4
        and_0(14,5) -> 4
        and_0(14,6) -> 4
        and_0(14,12) -> 4
        and_0(14,13) -> 4
        and_0(14,14) -> 4
        and_0(14,15) -> 4
        and_0(14,18) -> 4
        and_0(14,19) -> 4
        and_0(15,2) -> 4
        and_0(15,5) -> 4
        and_0(15,6) -> 4
        and_0(15,12) -> 4
        and_0(15,13) -> 4
        and_0(15,14) -> 4
        and_0(15,15) -> 4
        and_0(15,18) -> 4
        and_0(15,19) -> 4
        and_0(18,2) -> 4
        and_0(18,5) -> 4
        and_0(18,6) -> 4
        and_0(18,12) -> 4
        and_0(18,13) -> 4
        and_0(18,14) -> 4
        and_0(18,15) -> 4
        and_0(18,18) -> 4
        and_0(18,19) -> 4
        and_0(19,2) -> 4
        and_0(19,5) -> 4
        and_0(19,6) -> 4
        and_0(19,12) -> 4
        and_0(19,13) -> 4
        and_0(19,14) -> 4
        and_0(19,15) -> 4
        and_0(19,18) -> 4
        and_0(19,19) -> 4
        and_1(2,2) -> 21
        and_1(2,5) -> 21
        and_1(2,6) -> 21
        and_1(2,12) -> 21
        and_1(2,13) -> 21
        and_1(2,14) -> 21
        and_1(2,15) -> 21
        and_1(2,18) -> 21
        and_1(2,19) -> 21
        and_1(5,2) -> 21
        and_1(5,5) -> 21
        and_1(5,6) -> 21
        and_1(5,12) -> 21
        and_1(5,13) -> 21
        and_1(5,14) -> 21
        and_1(5,15) -> 21
        and_1(5,18) -> 21
        and_1(5,19) -> 21
        and_1(6,2) -> 21
        and_1(6,5) -> 21
        and_1(6,6) -> 21
        and_1(6,12) -> 21
        and_1(6,13) -> 21
        and_1(6,14) -> 21
        and_1(6,15) -> 21
        and_1(6,18) -> 21
        and_1(6,19) -> 21
        and_1(12,2) -> 21
        and_1(12,5) -> 21
        and_1(12,6) -> 21
        and_1(12,12) -> 21
        and_1(12,13) -> 21
        and_1(12,14) -> 21
        and_1(12,15) -> 21
        and_1(12,18) -> 21
        and_1(12,19) -> 21
        and_1(13,2) -> 21
        and_1(13,5) -> 21
        and_1(13,6) -> 21
        and_1(13,12) -> 21
        and_1(13,13) -> 21
        and_1(13,14) -> 21
        and_1(13,15) -> 21
        and_1(13,18) -> 21
        and_1(13,19) -> 21
        and_1(14,2) -> 21
        and_1(14,5) -> 21
        and_1(14,6) -> 21
        and_1(14,12) -> 21
        and_1(14,13) -> 21
        and_1(14,14) -> 21
        and_1(14,15) -> 21
        and_1(14,18) -> 21
        and_1(14,19) -> 21
        and_1(15,2) -> 21
        and_1(15,5) -> 21
        and_1(15,6) -> 21
        and_1(15,12) -> 21
        and_1(15,13) -> 21
        and_1(15,14) -> 21
        and_1(15,15) -> 21
        and_1(15,18) -> 21
        and_1(15,19) -> 21
        and_1(18,2) -> 21
        and_1(18,5) -> 21
        and_1(18,6) -> 21
        and_1(18,12) -> 21
        and_1(18,13) -> 21
        and_1(18,14) -> 21
        and_1(18,15) -> 21
        and_1(18,18) -> 21
        and_1(18,19) -> 21
        and_1(19,2) -> 21
        and_1(19,5) -> 21
        and_1(19,6) -> 21
        and_1(19,12) -> 21
        and_1(19,13) -> 21
        and_1(19,14) -> 21
        and_1(19,15) -> 21
        and_1(19,18) -> 21
        and_1(19,19) -> 21
        e_0() -> 5
        e_1() -> 27
        i_0() -> 6
        i_1() -> 27
        isList_0(2) -> 7
        isList_0(5) -> 7
        isList_0(6) -> 7
        isList_0(12) -> 7
        isList_0(13) -> 7
        isList_0(14) -> 7
        isList_0(15) -> 7
        isList_0(18) -> 7
        isList_0(19) -> 7
        isList_1(2) -> 22
        isList_1(5) -> 22
        isList_1(6) -> 22
        isList_1(12) -> 22
        isList_1(13) -> 22
        isList_1(14) -> 22
        isList_1(15) -> 22
        isList_1(18) -> 22
        isList_1(19) -> 22
        isNeList_0(2) -> 8
        isNeList_0(5) -> 8
        isNeList_0(6) -> 8
        isNeList_0(12) -> 8
        isNeList_0(13) -> 8
        isNeList_0(14) -> 8
        isNeList_0(15) -> 8
        isNeList_0(18) -> 8
        isNeList_0(19) -> 8
        isNeList_1(2) -> 23
        isNeList_1(5) -> 23
        isNeList_1(6) -> 23
        isNeList_1(12) -> 23
        isNeList_1(13) -> 23
        isNeList_1(14) -> 23
        isNeList_1(15) -> 23
        isNeList_1(18) -> 23
        isNeList_1(19) -> 23
        isNePal_0(2) -> 9
        isNePal_0(5) -> 9
        isNePal_0(6) -> 9
        isNePal_0(12) -> 9
        isNePal_0(13) -> 9
        isNePal_0(14) -> 9
        isNePal_0(15) -> 9
        isNePal_0(18) -> 9
        isNePal_0(19) -> 9
        isNePal_1(2) -> 24
        isNePal_1(5) -> 24
        isNePal_1(6) -> 24
        isNePal_1(12) -> 24
        isNePal_1(13) -> 24
        isNePal_1(14) -> 24
        isNePal_1(15) -> 24
        isNePal_1(18) -> 24
        isNePal_1(19) -> 24
        isPal_0(2) -> 10
        isPal_0(5) -> 10
        isPal_0(6) -> 10
        isPal_0(12) -> 10
        isPal_0(13) -> 10
        isPal_0(14) -> 10
        isPal_0(15) -> 10
        isPal_0(18) -> 10
        isPal_0(19) -> 10
        isPal_1(2) -> 25
        isPal_1(5) -> 25
        isPal_1(6) -> 25
        isPal_1(12) -> 25
        isPal_1(13) -> 25
        isPal_1(14) -> 25
        isPal_1(15) -> 25
        isPal_1(18) -> 25
        isPal_1(19) -> 25
        isQid_0(2) -> 11
        isQid_0(5) -> 11
        isQid_0(6) -> 11
        isQid_0(12) -> 11
        isQid_0(13) -> 11
        isQid_0(14) -> 11
        isQid_0(15) -> 11
        isQid_0(18) -> 11
        isQid_0(19) -> 11
        isQid_1(2) -> 26
        isQid_1(5) -> 26
        isQid_1(6) -> 26
        isQid_1(12) -> 26
        isQid_1(13) -> 26
        isQid_1(14) -> 26
        isQid_1(15) -> 26
        isQid_1(18) -> 26
        isQid_1(19) -> 26
        mark_0(2) -> 12
        mark_0(5) -> 12
        mark_0(6) -> 12
        mark_0(12) -> 12
        mark_0(13) -> 12
        mark_0(14) -> 12
        mark_0(15) -> 12
        mark_0(18) -> 12
        mark_0(19) -> 12
        mark_1(20) -> 1
        mark_1(20) -> 20
        mark_1(21) -> 4
        mark_1(21) -> 21
        nil_0() -> 13
        nil_1() -> 27
        o_0() -> 14
        o_1() -> 27
        ok_0(2) -> 15
        ok_0(5) -> 15
        ok_0(6) -> 15
        ok_0(12) -> 15
        ok_0(13) -> 15
        ok_0(14) -> 15
        ok_0(15) -> 15
        ok_0(18) -> 15
        ok_0(19) -> 15
        ok_1(20) -> 1
        ok_1(20) -> 20
        ok_1(21) -> 4
        ok_1(21) -> 21
        ok_1(22) -> 7
        ok_1(22) -> 22
        ok_1(23) -> 8
        ok_1(23) -> 23
        ok_1(24) -> 9
        ok_1(24) -> 24
        ok_1(25) -> 10
        ok_1(25) -> 25
        ok_1(26) -> 11
        ok_1(26) -> 26
        ok_1(27) -> 16
        ok_1(27) -> 28
        proper_0(2) -> 16
        proper_0(5) -> 16
        proper_0(6) -> 16
        proper_0(12) -> 16
        proper_0(13) -> 16
        proper_0(14) -> 16
        proper_0(15) -> 16
        proper_0(18) -> 16
        proper_0(19) -> 16
        proper_1(2) -> 28
        proper_1(5) -> 28
        proper_1(6) -> 28
        proper_1(12) -> 28
        proper_1(13) -> 28
        proper_1(14) -> 28
        proper_1(15) -> 28
        proper_1(18) -> 28
        proper_1(19) -> 28
        top_0(2) -> 17
        top_0(5) -> 17
        top_0(6) -> 17
        top_0(12) -> 17
        top_0(13) -> 17
        top_0(14) -> 17
        top_0(15) -> 17
        top_0(18) -> 17
        top_0(19) -> 17
        top_1(28) -> 17
        top_2(29) -> 17
        tt_0() -> 18
        tt_1() -> 27
        u_0() -> 19
        u_1() -> 27
*** 1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        __(X1,mark(X2)) -> mark(__(X1,X2))
        __(mark(X1),X2) -> mark(__(X1,X2))
        __(ok(X1),ok(X2)) -> ok(__(X1,X2))
        active(__(X,nil())) -> mark(X)
        active(__(X1,X2)) -> __(X1,active(X2))
        active(__(X1,X2)) -> __(active(X1),X2)
        active(__(__(X,Y),Z)) -> mark(__(X,__(Y,Z)))
        active(__(nil(),X)) -> mark(X)
        active(and(X1,X2)) -> and(active(X1),X2)
        active(and(tt(),X)) -> mark(X)
        active(isList(V)) -> mark(isNeList(V))
        active(isList(__(V1,V2))) -> mark(and(isList(V1),isList(V2)))
        active(isList(nil())) -> mark(tt())
        active(isNeList(V)) -> mark(isQid(V))
        active(isNeList(__(V1,V2))) -> mark(and(isList(V1),isNeList(V2)))
        active(isNeList(__(V1,V2))) -> mark(and(isNeList(V1),isList(V2)))
        active(isNePal(V)) -> mark(isQid(V))
        active(isNePal(__(I,__(P,I)))) -> mark(and(isQid(I),isPal(P)))
        active(isPal(V)) -> mark(isNePal(V))
        active(isPal(nil())) -> mark(tt())
        active(isQid(a())) -> mark(tt())
        active(isQid(e())) -> mark(tt())
        active(isQid(i())) -> mark(tt())
        active(isQid(o())) -> mark(tt())
        active(isQid(u())) -> mark(tt())
        and(mark(X1),X2) -> mark(and(X1,X2))
        and(ok(X1),ok(X2)) -> ok(and(X1,X2))
        isList(ok(X)) -> ok(isList(X))
        isNeList(ok(X)) -> ok(isNeList(X))
        isNePal(ok(X)) -> ok(isNePal(X))
        isPal(ok(X)) -> ok(isPal(X))
        isQid(ok(X)) -> ok(isQid(X))
        proper(__(X1,X2)) -> __(proper(X1),proper(X2))
        proper(a()) -> ok(a())
        proper(and(X1,X2)) -> and(proper(X1),proper(X2))
        proper(e()) -> ok(e())
        proper(i()) -> ok(i())
        proper(isList(X)) -> isList(proper(X))
        proper(isNeList(X)) -> isNeList(proper(X))
        proper(isNePal(X)) -> isNePal(proper(X))
        proper(isPal(X)) -> isPal(proper(X))
        proper(isQid(X)) -> isQid(proper(X))
        proper(nil()) -> ok(nil())
        proper(o()) -> ok(o())
        proper(tt()) -> ok(tt())
        proper(u()) -> ok(u())
        top(mark(X)) -> top(proper(X))
        top(ok(X)) -> top(active(X))
      Signature:
        {__/2,active/1,and/2,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,proper/1,top/1} / {a/0,e/0,i/0,mark/1,nil/0,o/0,ok/1,tt/0,u/0}
      Obligation:
        Full
        basic terms: {__,active,and,isList,isNeList,isNePal,isPal,isQid,proper,top}/{a,e,i,mark,nil,o,ok,tt,u}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).