*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [3]         
               p(U21) = [1] x1 + [1] x2 + [0]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [2]         
               p(U41) = [1] x1 + [1] x2 + [0]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [4]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [0]
               p(U72) = [1] x1 + [0]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [1]
                 p(a) = [0]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [0]                  
                 p(i) = [0]                  
            p(isList) = [1] x1 + [0]         
          p(isNeList) = [1] x1 + [0]         
           p(isNePal) = [1] x1 + [0]         
             p(isPal) = [1] x1 + [0]         
             p(isQid) = [1] x1 + [0]         
             p(n____) = [1] x1 + [1] x2 + [0]
              p(n__a) = [0]                  
              p(n__e) = [7]                  
              p(n__i) = [0]                  
            p(n__nil) = [0]                  
              p(n__o) = [0]                  
              p(n__u) = [0]                  
               p(nil) = [0]                  
                 p(o) = [0]                  
                p(tt) = [0]                  
                 p(u) = [0]                  
        
        Following rules are strictly oriented:
                        U11(tt()) = [3]                      
                                  > [0]                      
                                  = tt()                     
        
                        U31(tt()) = [2]                      
                                  > [0]                      
                                  = tt()                     
        
                     U51(tt(),V2) = [1] V2 + [4]             
                                  > [1] V2 + [0]             
                                  = U52(isList(activate(V2)))
        
                      __(X,nil()) = [1] X + [1]              
                                  > [1] X + [0]              
                                  = X                        
        
                        __(X1,X2) = [1] X1 + [1] X2 + [1]    
                                  > [1] X1 + [1] X2 + [0]    
                                  = n____(X1,X2)             
        
                      __(nil(),X) = [1] X + [1]              
                                  > [1] X + [0]              
                                  = X                        
        
                 activate(n__e()) = [7]                      
                                  > [0]                      
                                  = e()                      
        
        isNePal(n____(I,__(P,I))) = [2] I + [1] P + [1]      
                                  > [1] I + [1] P + [0]      
                                  = U71(isQid(activate(I))   
                                       ,activate(P))         
        
                    isQid(n__e()) = [7]                      
                                  > [0]                      
                                  = tt()                     
        
        
        Following rules are (at-least) weakly oriented:
                  U21(tt(),V2) =  [1] V2 + [0]               
                               >= [1] V2 + [0]               
                               =  U22(isList(activate(V2)))  
        
                     U22(tt()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                  U41(tt(),V2) =  [1] V2 + [0]               
                               >= [1] V2 + [0]               
                               =  U42(isNeList(activate(V2)))
        
                     U42(tt()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                     U52(tt()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                     U61(tt()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                   U71(tt(),P) =  [1] P + [0]                
                               >= [1] P + [0]                
                               =  U72(isPal(activate(P)))    
        
                     U72(tt()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                     U81(tt()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                 __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [2]
                               >= [1] X + [1] Y + [1] Z + [2]
                               =  __(X,__(Y,Z))              
        
                           a() =  [0]                        
                               >= [0]                        
                               =  n__a()                     
        
                   activate(X) =  [1] X + [0]                
                               >= [1] X + [0]                
                               =  X                          
        
        activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]      
                               >= [1] X1 + [1] X2 + [1]      
                               =  __(X1,X2)                  
        
              activate(n__a()) =  [0]                        
                               >= [0]                        
                               =  a()                        
        
              activate(n__i()) =  [0]                        
                               >= [0]                        
                               =  i()                        
        
            activate(n__nil()) =  [0]                        
                               >= [0]                        
                               =  nil()                      
        
              activate(n__o()) =  [0]                        
                               >= [0]                        
                               =  o()                        
        
              activate(n__u()) =  [0]                        
                               >= [0]                        
                               =  u()                        
        
                           e() =  [0]                        
                               >= [7]                        
                               =  n__e()                     
        
                           i() =  [0]                        
                               >= [0]                        
                               =  n__i()                     
        
                     isList(V) =  [1] V + [0]                
                               >= [1] V + [3]                
                               =  U11(isNeList(activate(V))) 
        
          isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]      
                               >= [1] V1 + [1] V2 + [0]      
                               =  U21(isList(activate(V1))   
                                     ,activate(V2))          
        
              isList(n__nil()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                   isNeList(V) =  [1] V + [0]                
                               >= [1] V + [2]                
                               =  U31(isQid(activate(V)))    
        
        isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]      
                               >= [1] V1 + [1] V2 + [0]      
                               =  U41(isList(activate(V1))   
                                     ,activate(V2))          
        
        isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]      
                               >= [1] V1 + [1] V2 + [4]      
                               =  U51(isNeList(activate(V1)) 
                                     ,activate(V2))          
        
                    isNePal(V) =  [1] V + [0]                
                               >= [1] V + [0]                
                               =  U61(isQid(activate(V)))    
        
                      isPal(V) =  [1] V + [0]                
                               >= [1] V + [0]                
                               =  U81(isNePal(activate(V)))  
        
               isPal(n__nil()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                 isQid(n__a()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                 isQid(n__i()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                 isQid(n__o()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                 isQid(n__u()) =  [0]                        
                               >= [0]                        
                               =  tt()                       
        
                         nil() =  [0]                        
                               >= [0]                        
                               =  n__nil()                   
        
                           o() =  [0]                        
                               >= [0]                        
                               =  n__o()                     
        
                           u() =  [0]                        
                               >= [0]                        
                               =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U31(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__e()) -> e()
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isQid(n__e()) -> tt()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [0]         
               p(U21) = [1] x1 + [1] x2 + [0]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [0]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [7]
               p(U52) = [1] x1 + [7]         
               p(U61) = [1] x1 + [7]         
               p(U71) = [1] x1 + [1] x2 + [0]
               p(U72) = [1] x1 + [0]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [0]
                 p(a) = [0]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [0]                  
                 p(i) = [0]                  
            p(isList) = [1] x1 + [0]         
          p(isNeList) = [1] x1 + [0]         
           p(isNePal) = [1] x1 + [0]         
             p(isPal) = [1] x1 + [0]         
             p(isQid) = [1] x1 + [0]         
             p(n____) = [1] x1 + [1] x2 + [0]
              p(n__a) = [5]                  
              p(n__e) = [0]                  
              p(n__i) = [0]                  
            p(n__nil) = [0]                  
              p(n__o) = [0]                  
              p(n__u) = [0]                  
               p(nil) = [0]                  
                 p(o) = [0]                  
                p(tt) = [0]                  
                 p(u) = [1]                  
        
        Following rules are strictly oriented:
               U52(tt()) = [7]   
                         > [0]   
                         = tt()  
        
               U61(tt()) = [7]   
                         > [0]   
                         = tt()  
        
        activate(n__a()) = [5]   
                         > [0]   
                         = a()   
        
           isQid(n__a()) = [5]   
                         > [0]   
                         = tt()  
        
                     u() = [1]   
                         > [0]   
                         = n__u()
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U21(tt(),V2) =  [1] V2 + [0]               
                                  >= [1] V2 + [0]               
                                  =  U22(isList(activate(V2)))  
        
                        U22(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                        U31(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U41(tt(),V2) =  [1] V2 + [0]               
                                  >= [1] V2 + [0]               
                                  =  U42(isNeList(activate(V2)))
        
                        U42(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U51(tt(),V2) =  [1] V2 + [7]               
                                  >= [1] V2 + [7]               
                                  =  U52(isList(activate(V2)))  
        
                      U71(tt(),P) =  [1] P + [0]                
                                  >= [1] P + [0]                
                                  =  U72(isPal(activate(P)))    
        
                        U72(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                        U81(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      __(X,nil()) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                  >= [1] X1 + [1] X2 + [0]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [0]
                                  >= [1] X + [1] Y + [1] Z + [0]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [0]                        
                                  >= [5]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]      
                                  >= [1] X1 + [1] X2 + [0]      
                                  =  __(X1,X2)                  
        
                 activate(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  e()                        
        
                 activate(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  i()                        
        
               activate(n__nil()) =  [0]                        
                                  >= [0]                        
                                  =  nil()                      
        
                 activate(n__o()) =  [0]                        
                                  >= [0]                        
                                  =  o()                        
        
                 activate(n__u()) =  [0]                        
                                  >= [1]                        
                                  =  u()                        
        
                              e() =  [0]                        
                                  >= [0]                        
                                  =  n__e()                     
        
                              i() =  [0]                        
                                  >= [0]                        
                                  =  n__i()                     
        
                        isList(V) =  [1] V + [0]                
                                  >= [1] V + [0]                
                                  =  U11(isNeList(activate(V))) 
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]      
                                  >= [1] V1 + [1] V2 + [0]      
                                  =  U21(isList(activate(V1))   
                                        ,activate(V2))          
        
                 isList(n__nil()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      isNeList(V) =  [1] V + [0]                
                                  >= [1] V + [0]                
                                  =  U31(isQid(activate(V)))    
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]      
                                  >= [1] V1 + [1] V2 + [0]      
                                  =  U41(isList(activate(V1))   
                                        ,activate(V2))          
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [0]      
                                  >= [1] V1 + [1] V2 + [7]      
                                  =  U51(isNeList(activate(V1)) 
                                        ,activate(V2))          
        
                       isNePal(V) =  [1] V + [0]                
                                  >= [1] V + [7]                
                                  =  U61(isQid(activate(V)))    
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [0]        
                                  >= [1] I + [1] P + [0]        
                                  =  U71(isQid(activate(I))     
                                        ,activate(P))           
        
                         isPal(V) =  [1] V + [0]                
                                  >= [1] V + [0]                
                                  =  U81(isNePal(activate(V)))  
        
                  isPal(n__nil()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__o()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__u()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                            nil() =  [0]                        
                                  >= [0]                        
                                  =  n__nil()                   
        
                              o() =  [0]                        
                                  >= [0]                        
                                  =  n__o()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U31(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [0]         
               p(U21) = [1] x1 + [1] x2 + [0]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [4]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [1]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [0]
               p(U72) = [1] x1 + [0]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [0]
                 p(a) = [0]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [0]                  
                 p(i) = [0]                  
            p(isList) = [1] x1 + [5]         
          p(isNeList) = [1] x1 + [5]         
           p(isNePal) = [1] x1 + [4]         
             p(isPal) = [1] x1 + [0]         
             p(isQid) = [1] x1 + [4]         
             p(n____) = [1] x1 + [1] x2 + [0]
              p(n__a) = [0]                  
              p(n__e) = [0]                  
              p(n__i) = [0]                  
            p(n__nil) = [0]                  
              p(n__o) = [4]                  
              p(n__u) = [0]                  
               p(nil) = [0]                  
                 p(o) = [0]                  
                p(tt) = [4]                  
                 p(u) = [0]                  
        
        Following rules are strictly oriented:
            U41(tt(),V2) = [1] V2 + [8]               
                         > [1] V2 + [5]               
                         = U42(isNeList(activate(V2)))
        
             U71(tt(),P) = [1] P + [4]                
                         > [1] P + [0]                
                         = U72(isPal(activate(P)))    
        
        activate(n__o()) = [4]                        
                         > [0]                        
                         = o()                        
        
        isList(n__nil()) = [5]                        
                         > [4]                        
                         = tt()                       
        
             isNeList(V) = [1] V + [5]                
                         > [1] V + [4]                
                         = U31(isQid(activate(V)))    
        
           isQid(n__o()) = [8]                        
                         > [4]                        
                         = tt()                       
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                     U21(tt(),V2) =  [1] V2 + [4]               
                                  >= [1] V2 + [5]               
                                  =  U22(isList(activate(V2)))  
        
                        U22(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                        U31(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                        U42(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                     U51(tt(),V2) =  [1] V2 + [5]               
                                  >= [1] V2 + [5]               
                                  =  U52(isList(activate(V2)))  
        
                        U52(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                        U61(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                        U72(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                        U81(tt()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                      __(X,nil()) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                  >= [1] X1 + [1] X2 + [0]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [0]
                                  >= [1] X + [1] Y + [1] Z + [0]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [0]                        
                                  >= [0]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]      
                                  >= [1] X1 + [1] X2 + [0]      
                                  =  __(X1,X2)                  
        
                 activate(n__a()) =  [0]                        
                                  >= [0]                        
                                  =  a()                        
        
                 activate(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  e()                        
        
                 activate(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  i()                        
        
               activate(n__nil()) =  [0]                        
                                  >= [0]                        
                                  =  nil()                      
        
                 activate(n__u()) =  [0]                        
                                  >= [0]                        
                                  =  u()                        
        
                              e() =  [0]                        
                                  >= [0]                        
                                  =  n__e()                     
        
                              i() =  [0]                        
                                  >= [0]                        
                                  =  n__i()                     
        
                        isList(V) =  [1] V + [5]                
                                  >= [1] V + [5]                
                                  =  U11(isNeList(activate(V))) 
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]      
                                  >= [1] V1 + [1] V2 + [5]      
                                  =  U21(isList(activate(V1))   
                                        ,activate(V2))          
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]      
                                  >= [1] V1 + [1] V2 + [9]      
                                  =  U41(isList(activate(V1))   
                                        ,activate(V2))          
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]      
                                  >= [1] V1 + [1] V2 + [6]      
                                  =  U51(isNeList(activate(V1)) 
                                        ,activate(V2))          
        
                       isNePal(V) =  [1] V + [4]                
                                  >= [1] V + [4]                
                                  =  U61(isQid(activate(V)))    
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [4]        
                                  >= [1] I + [1] P + [4]        
                                  =  U71(isQid(activate(I))     
                                        ,activate(P))           
        
                         isPal(V) =  [1] V + [0]                
                                  >= [1] V + [4]                
                                  =  U81(isNePal(activate(V)))  
        
                  isPal(n__nil()) =  [0]                        
                                  >= [4]                        
                                  =  tt()                       
        
                    isQid(n__a()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                    isQid(n__i()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                    isQid(n__u()) =  [4]                        
                                  >= [4]                        
                                  =  tt()                       
        
                            nil() =  [0]                        
                                  >= [0]                        
                                  =  n__nil()                   
        
                              o() =  [0]                        
                                  >= [4]                        
                                  =  n__o()                     
        
                              u() =  [0]                        
                                  >= [0]                        
                                  =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U42(tt()) -> tt()
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__o()) -> o()
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__o()) -> tt()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [0]         
               p(U21) = [1] x1 + [1] x2 + [5]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [4]
               p(U42) = [1] x1 + [2]         
               p(U51) = [1] x1 + [1] x2 + [0]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [3]
               p(U72) = [1] x1 + [5]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [0]
                 p(a) = [0]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [7]                  
                 p(i) = [1]                  
            p(isList) = [1] x1 + [2]         
          p(isNeList) = [1] x1 + [4]         
           p(isNePal) = [1] x1 + [7]         
             p(isPal) = [1] x1 + [0]         
             p(isQid) = [1] x1 + [4]         
             p(n____) = [1] x1 + [1] x2 + [0]
              p(n__a) = [0]                  
              p(n__e) = [7]                  
              p(n__i) = [0]                  
            p(n__nil) = [0]                  
              p(n__o) = [4]                  
              p(n__u) = [2]                  
               p(nil) = [0]                  
                 p(o) = [4]                  
                p(tt) = [2]                  
                 p(u) = [5]                  
        
        Following rules are strictly oriented:
         U21(tt(),V2) = [1] V2 + [7]             
                      > [1] V2 + [2]             
                      = U22(isList(activate(V2)))
        
            U42(tt()) = [4]                      
                      > [2]                      
                      = tt()                     
        
            U72(tt()) = [7]                      
                      > [2]                      
                      = tt()                     
        
                  i() = [1]                      
                      > [0]                      
                      = n__i()                   
        
           isNePal(V) = [1] V + [7]              
                      > [1] V + [4]              
                      = U61(isQid(activate(V)))  
        
        isQid(n__i()) = [4]                      
                      > [2]                      
                      = tt()                     
        
        isQid(n__u()) = [6]                      
                      > [2]                      
                      = tt()                     
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                        U22(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                        U31(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                     U41(tt(),V2) =  [1] V2 + [6]               
                                  >= [1] V2 + [6]               
                                  =  U42(isNeList(activate(V2)))
        
                     U51(tt(),V2) =  [1] V2 + [2]               
                                  >= [1] V2 + [2]               
                                  =  U52(isList(activate(V2)))  
        
                        U52(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                        U61(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                      U71(tt(),P) =  [1] P + [5]                
                                  >= [1] P + [5]                
                                  =  U72(isPal(activate(P)))    
        
                        U81(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                      __(X,nil()) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [0]      
                                  >= [1] X1 + [1] X2 + [0]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [0]
                                  >= [1] X + [1] Y + [1] Z + [0]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [0]                        
                                  >= [0]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [0]      
                                  >= [1] X1 + [1] X2 + [0]      
                                  =  __(X1,X2)                  
        
                 activate(n__a()) =  [0]                        
                                  >= [0]                        
                                  =  a()                        
        
                 activate(n__e()) =  [7]                        
                                  >= [7]                        
                                  =  e()                        
        
                 activate(n__i()) =  [0]                        
                                  >= [1]                        
                                  =  i()                        
        
               activate(n__nil()) =  [0]                        
                                  >= [0]                        
                                  =  nil()                      
        
                 activate(n__o()) =  [4]                        
                                  >= [4]                        
                                  =  o()                        
        
                 activate(n__u()) =  [2]                        
                                  >= [5]                        
                                  =  u()                        
        
                              e() =  [7]                        
                                  >= [7]                        
                                  =  n__e()                     
        
                        isList(V) =  [1] V + [2]                
                                  >= [1] V + [4]                
                                  =  U11(isNeList(activate(V))) 
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [2]      
                                  >= [1] V1 + [1] V2 + [7]      
                                  =  U21(isList(activate(V1))   
                                        ,activate(V2))          
        
                 isList(n__nil()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                      isNeList(V) =  [1] V + [4]                
                                  >= [1] V + [4]                
                                  =  U31(isQid(activate(V)))    
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]      
                                  >= [1] V1 + [1] V2 + [6]      
                                  =  U41(isList(activate(V1))   
                                        ,activate(V2))          
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]      
                                  >= [1] V1 + [1] V2 + [4]      
                                  =  U51(isNeList(activate(V1)) 
                                        ,activate(V2))          
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [7]        
                                  >= [1] I + [1] P + [7]        
                                  =  U71(isQid(activate(I))     
                                        ,activate(P))           
        
                         isPal(V) =  [1] V + [0]                
                                  >= [1] V + [7]                
                                  =  U81(isNePal(activate(V)))  
        
                  isPal(n__nil()) =  [0]                        
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__a()) =  [4]                        
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [11]                       
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__o()) =  [8]                        
                                  >= [2]                        
                                  =  tt()                       
        
                            nil() =  [0]                        
                                  >= [0]                        
                                  =  n__nil()                   
        
                              o() =  [4]                        
                                  >= [4]                        
                                  =  n__o()                     
        
                              u() =  [5]                        
                                  >= [2]                        
                                  =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        U22(tt()) -> tt()
        U81(tt()) -> tt()
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__u()) -> u()
        e() -> n__e()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__o()) -> o()
        i() -> n__i()
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [2]         
               p(U21) = [1] x1 + [1] x2 + [6]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [1]         
               p(U41) = [1] x1 + [1] x2 + [6]
               p(U42) = [1] x1 + [4]         
               p(U51) = [1] x1 + [1] x2 + [3]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [0]
               p(U72) = [1] x1 + [0]         
               p(U81) = [1] x1 + [7]         
                p(__) = [1] x1 + [1] x2 + [1]
                 p(a) = [0]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [0]                  
                 p(i) = [0]                  
            p(isList) = [1] x1 + [4]         
          p(isNeList) = [1] x1 + [3]         
           p(isNePal) = [1] x1 + [4]         
             p(isPal) = [1] x1 + [0]         
             p(isQid) = [1] x1 + [2]         
             p(n____) = [1] x1 + [1] x2 + [1]
              p(n__a) = [5]                  
              p(n__e) = [0]                  
              p(n__i) = [0]                  
            p(n__nil) = [5]                  
              p(n__o) = [0]                  
              p(n__u) = [0]                  
               p(nil) = [0]                  
                 p(o) = [0]                  
                p(tt) = [1]                  
                 p(u) = [0]                  
        
        Following rules are strictly oriented:
                 U81(tt()) = [8]  
                           > [1]  
                           = tt() 
        
        activate(n__nil()) = [5]  
                           > [0]  
                           = nil()
        
           isPal(n__nil()) = [5]  
                           > [1]  
                           = tt() 
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [3]                        
                                  >= [1]                        
                                  =  tt()                       
        
                     U21(tt(),V2) =  [1] V2 + [7]               
                                  >= [1] V2 + [4]               
                                  =  U22(isList(activate(V2)))  
        
                        U22(tt()) =  [1]                        
                                  >= [1]                        
                                  =  tt()                       
        
                        U31(tt()) =  [2]                        
                                  >= [1]                        
                                  =  tt()                       
        
                     U41(tt(),V2) =  [1] V2 + [7]               
                                  >= [1] V2 + [7]               
                                  =  U42(isNeList(activate(V2)))
        
                        U42(tt()) =  [5]                        
                                  >= [1]                        
                                  =  tt()                       
        
                     U51(tt(),V2) =  [1] V2 + [4]               
                                  >= [1] V2 + [4]               
                                  =  U52(isList(activate(V2)))  
        
                        U52(tt()) =  [1]                        
                                  >= [1]                        
                                  =  tt()                       
        
                        U61(tt()) =  [1]                        
                                  >= [1]                        
                                  =  tt()                       
        
                      U71(tt(),P) =  [1] P + [1]                
                                  >= [1] P + [0]                
                                  =  U72(isPal(activate(P)))    
        
                        U72(tt()) =  [1]                        
                                  >= [1]                        
                                  =  tt()                       
        
                      __(X,nil()) =  [1] X + [1]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [2]
                                  >= [1] X + [1] Y + [1] Z + [2]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [1]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [0]                        
                                  >= [5]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  __(X1,X2)                  
        
                 activate(n__a()) =  [5]                        
                                  >= [0]                        
                                  =  a()                        
        
                 activate(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  e()                        
        
                 activate(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  i()                        
        
                 activate(n__o()) =  [0]                        
                                  >= [0]                        
                                  =  o()                        
        
                 activate(n__u()) =  [0]                        
                                  >= [0]                        
                                  =  u()                        
        
                              e() =  [0]                        
                                  >= [0]                        
                                  =  n__e()                     
        
                              i() =  [0]                        
                                  >= [0]                        
                                  =  n__i()                     
        
                        isList(V) =  [1] V + [4]                
                                  >= [1] V + [5]                
                                  =  U11(isNeList(activate(V))) 
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [5]      
                                  >= [1] V1 + [1] V2 + [10]     
                                  =  U21(isList(activate(V1))   
                                        ,activate(V2))          
        
                 isList(n__nil()) =  [9]                        
                                  >= [1]                        
                                  =  tt()                       
        
                      isNeList(V) =  [1] V + [3]                
                                  >= [1] V + [3]                
                                  =  U31(isQid(activate(V)))    
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]      
                                  >= [1] V1 + [1] V2 + [10]     
                                  =  U41(isList(activate(V1))   
                                        ,activate(V2))          
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [4]      
                                  >= [1] V1 + [1] V2 + [6]      
                                  =  U51(isNeList(activate(V1)) 
                                        ,activate(V2))          
        
                       isNePal(V) =  [1] V + [4]                
                                  >= [1] V + [2]                
                                  =  U61(isQid(activate(V)))    
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [6]        
                                  >= [1] I + [1] P + [2]        
                                  =  U71(isQid(activate(I))     
                                        ,activate(P))           
        
                         isPal(V) =  [1] V + [0]                
                                  >= [1] V + [11]               
                                  =  U81(isNePal(activate(V)))  
        
                    isQid(n__a()) =  [7]                        
                                  >= [1]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [2]                        
                                  >= [1]                        
                                  =  tt()                       
        
                    isQid(n__i()) =  [2]                        
                                  >= [1]                        
                                  =  tt()                       
        
                    isQid(n__o()) =  [2]                        
                                  >= [1]                        
                                  =  tt()                       
        
                    isQid(n__u()) =  [2]                        
                                  >= [1]                        
                                  =  tt()                       
        
                            nil() =  [0]                        
                                  >= [5]                        
                                  =  n__nil()                   
        
                              o() =  [0]                        
                                  >= [0]                        
                                  =  n__o()                     
        
                              u() =  [0]                        
                                  >= [0]                        
                                  =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        U22(tt()) -> tt()
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__u()) -> u()
        e() -> n__e()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isPal(V) -> U81(isNePal(activate(V)))
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        i() -> n__i()
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [5]         
               p(U21) = [1] x1 + [1] x2 + [2]
               p(U22) = [1] x1 + [2]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [2]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [0]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [4]
               p(U72) = [1] x1 + [1]         
               p(U81) = [1] x1 + [6]         
                p(__) = [1] x1 + [1] x2 + [1]
                 p(a) = [0]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [4]                  
                 p(i) = [0]                  
            p(isList) = [1] x1 + [0]         
          p(isNeList) = [1] x1 + [2]         
           p(isNePal) = [1] x1 + [2]         
             p(isPal) = [1] x1 + [3]         
             p(isQid) = [1] x1 + [0]         
             p(n____) = [1] x1 + [1] x2 + [1]
              p(n__a) = [1]                  
              p(n__e) = [6]                  
              p(n__i) = [0]                  
            p(n__nil) = [5]                  
              p(n__o) = [0]                  
              p(n__u) = [0]                  
               p(nil) = [2]                  
                 p(o) = [0]                  
                p(tt) = [0]                  
                 p(u) = [2]                  
        
        Following rules are strictly oriented:
                     U22(tt()) = [2]                       
                               > [0]                       
                               = tt()                      
        
        isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [3]     
                               > [1] V1 + [1] V2 + [2]     
                               = U41(isList(activate(V1))  
                                    ,activate(V2))         
        
        isNeList(n____(V1,V2)) = [1] V1 + [1] V2 + [3]     
                               > [1] V1 + [1] V2 + [2]     
                               = U51(isNeList(activate(V1))
                                    ,activate(V2))         
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [5]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U21(tt(),V2) =  [1] V2 + [2]               
                                  >= [1] V2 + [2]               
                                  =  U22(isList(activate(V2)))  
        
                        U31(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U41(tt(),V2) =  [1] V2 + [2]               
                                  >= [1] V2 + [2]               
                                  =  U42(isNeList(activate(V2)))
        
                        U42(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U51(tt(),V2) =  [1] V2 + [0]               
                                  >= [1] V2 + [0]               
                                  =  U52(isList(activate(V2)))  
        
                        U52(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                        U61(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      U71(tt(),P) =  [1] P + [4]                
                                  >= [1] P + [4]                
                                  =  U72(isPal(activate(P)))    
        
                        U72(tt()) =  [1]                        
                                  >= [0]                        
                                  =  tt()                       
        
                        U81(tt()) =  [6]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      __(X,nil()) =  [1] X + [3]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [2]
                                  >= [1] X + [1] Y + [1] Z + [2]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [3]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [0]                        
                                  >= [1]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  __(X1,X2)                  
        
                 activate(n__a()) =  [1]                        
                                  >= [0]                        
                                  =  a()                        
        
                 activate(n__e()) =  [6]                        
                                  >= [4]                        
                                  =  e()                        
        
                 activate(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  i()                        
        
               activate(n__nil()) =  [5]                        
                                  >= [2]                        
                                  =  nil()                      
        
                 activate(n__o()) =  [0]                        
                                  >= [0]                        
                                  =  o()                        
        
                 activate(n__u()) =  [0]                        
                                  >= [2]                        
                                  =  u()                        
        
                              e() =  [4]                        
                                  >= [6]                        
                                  =  n__e()                     
        
                              i() =  [0]                        
                                  >= [0]                        
                                  =  n__i()                     
        
                        isList(V) =  [1] V + [0]                
                                  >= [1] V + [7]                
                                  =  U11(isNeList(activate(V))) 
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [1]      
                                  >= [1] V1 + [1] V2 + [2]      
                                  =  U21(isList(activate(V1))   
                                        ,activate(V2))          
        
                 isList(n__nil()) =  [5]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      isNeList(V) =  [1] V + [2]                
                                  >= [1] V + [0]                
                                  =  U31(isQid(activate(V)))    
        
                       isNePal(V) =  [1] V + [2]                
                                  >= [1] V + [0]                
                                  =  U61(isQid(activate(V)))    
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [4]        
                                  >= [1] I + [1] P + [4]        
                                  =  U71(isQid(activate(I))     
                                        ,activate(P))           
        
                         isPal(V) =  [1] V + [3]                
                                  >= [1] V + [8]                
                                  =  U81(isNePal(activate(V)))  
        
                  isPal(n__nil()) =  [8]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__a()) =  [1]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [6]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__o()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__u()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                            nil() =  [2]                        
                                  >= [5]                        
                                  =  n__nil()                   
        
                              o() =  [0]                        
                                  >= [0]                        
                                  =  n__o()                     
        
                              u() =  [2]                        
                                  >= [0]                        
                                  =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__u()) -> u()
        e() -> n__e()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isPal(V) -> U81(isNePal(activate(V)))
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        i() -> n__i()
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [0]         
               p(U21) = [1] x1 + [1] x2 + [3]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [0]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [4]
               p(U52) = [1] x1 + [1]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [3]
               p(U72) = [1] x1 + [1]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [4]
                 p(a) = [2]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [2]                  
                 p(i) = [3]                  
            p(isList) = [1] x1 + [5]         
          p(isNeList) = [1] x1 + [2]         
           p(isNePal) = [1] x1 + [6]         
             p(isPal) = [1] x1 + [4]         
             p(isQid) = [1] x1 + [0]         
             p(n____) = [1] x1 + [1] x2 + [4]
              p(n__a) = [2]                  
              p(n__e) = [2]                  
              p(n__i) = [2]                  
            p(n__nil) = [1]                  
              p(n__o) = [3]                  
              p(n__u) = [2]                  
               p(nil) = [0]                  
                 p(o) = [3]                  
                p(tt) = [2]                  
                 p(u) = [2]                  
        
        Following rules are strictly oriented:
                   isList(V) = [1] V + [5]               
                             > [1] V + [2]               
                             = U11(isNeList(activate(V)))
        
        isList(n____(V1,V2)) = [1] V1 + [1] V2 + [9]     
                             > [1] V1 + [1] V2 + [8]     
                             = U21(isList(activate(V1))  
                                  ,activate(V2))         
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                     U21(tt(),V2) =  [1] V2 + [5]               
                                  >= [1] V2 + [5]               
                                  =  U22(isList(activate(V2)))  
        
                        U22(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                        U31(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                     U41(tt(),V2) =  [1] V2 + [2]               
                                  >= [1] V2 + [2]               
                                  =  U42(isNeList(activate(V2)))
        
                        U42(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                     U51(tt(),V2) =  [1] V2 + [6]               
                                  >= [1] V2 + [6]               
                                  =  U52(isList(activate(V2)))  
        
                        U52(tt()) =  [3]                        
                                  >= [2]                        
                                  =  tt()                       
        
                        U61(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                      U71(tt(),P) =  [1] P + [5]                
                                  >= [1] P + [5]                
                                  =  U72(isPal(activate(P)))    
        
                        U72(tt()) =  [3]                        
                                  >= [2]                        
                                  =  tt()                       
        
                        U81(tt()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                      __(X,nil()) =  [1] X + [4]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [4]      
                                  >= [1] X1 + [1] X2 + [4]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [8]
                                  >= [1] X + [1] Y + [1] Z + [8]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [4]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [2]                        
                                  >= [2]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [4]      
                                  >= [1] X1 + [1] X2 + [4]      
                                  =  __(X1,X2)                  
        
                 activate(n__a()) =  [2]                        
                                  >= [2]                        
                                  =  a()                        
        
                 activate(n__e()) =  [2]                        
                                  >= [2]                        
                                  =  e()                        
        
                 activate(n__i()) =  [2]                        
                                  >= [3]                        
                                  =  i()                        
        
               activate(n__nil()) =  [1]                        
                                  >= [0]                        
                                  =  nil()                      
        
                 activate(n__o()) =  [3]                        
                                  >= [3]                        
                                  =  o()                        
        
                 activate(n__u()) =  [2]                        
                                  >= [2]                        
                                  =  u()                        
        
                              e() =  [2]                        
                                  >= [2]                        
                                  =  n__e()                     
        
                              i() =  [3]                        
                                  >= [2]                        
                                  =  n__i()                     
        
                 isList(n__nil()) =  [6]                        
                                  >= [2]                        
                                  =  tt()                       
        
                      isNeList(V) =  [1] V + [2]                
                                  >= [1] V + [0]                
                                  =  U31(isQid(activate(V)))    
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]      
                                  >= [1] V1 + [1] V2 + [5]      
                                  =  U41(isList(activate(V1))   
                                        ,activate(V2))          
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [6]      
                                  >= [1] V1 + [1] V2 + [6]      
                                  =  U51(isNeList(activate(V1)) 
                                        ,activate(V2))          
        
                       isNePal(V) =  [1] V + [6]                
                                  >= [1] V + [0]                
                                  =  U61(isQid(activate(V)))    
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [14]       
                                  >= [1] I + [1] P + [3]        
                                  =  U71(isQid(activate(I))     
                                        ,activate(P))           
        
                         isPal(V) =  [1] V + [4]                
                                  >= [1] V + [6]                
                                  =  U81(isNePal(activate(V)))  
        
                  isPal(n__nil()) =  [5]                        
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__a()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__i()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__o()) =  [3]                        
                                  >= [2]                        
                                  =  tt()                       
        
                    isQid(n__u()) =  [2]                        
                                  >= [2]                        
                                  =  tt()                       
        
                            nil() =  [0]                        
                                  >= [1]                        
                                  =  n__nil()                   
        
                              o() =  [3]                        
                                  >= [3]                        
                                  =  n__o()                     
        
                              u() =  [2]                        
                                  >= [2]                        
                                  =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__u()) -> u()
        e() -> n__e()
        isPal(V) -> U81(isNePal(activate(V)))
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [0]         
               p(U21) = [1] x1 + [1] x2 + [1]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [0]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [1]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [2]
               p(U72) = [1] x1 + [0]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [1]
                 p(a) = [0]                  
          p(activate) = [1] x1 + [0]         
                 p(e) = [0]                  
                 p(i) = [0]                  
            p(isList) = [1] x1 + [1]         
          p(isNeList) = [1] x1 + [0]         
           p(isNePal) = [1] x1 + [0]         
             p(isPal) = [1] x1 + [1]         
             p(isQid) = [1] x1 + [0]         
             p(n____) = [1] x1 + [1] x2 + [1]
              p(n__a) = [0]                  
              p(n__e) = [0]                  
              p(n__i) = [0]                  
            p(n__nil) = [5]                  
              p(n__o) = [1]                  
              p(n__u) = [0]                  
               p(nil) = [4]                  
                 p(o) = [0]                  
                p(tt) = [0]                  
                 p(u) = [0]                  
        
        Following rules are strictly oriented:
        isPal(V) = [1] V + [1]              
                 > [1] V + [0]              
                 = U81(isNePal(activate(V)))
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U21(tt(),V2) =  [1] V2 + [1]               
                                  >= [1] V2 + [1]               
                                  =  U22(isList(activate(V2)))  
        
                        U22(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                        U31(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U41(tt(),V2) =  [1] V2 + [0]               
                                  >= [1] V2 + [0]               
                                  =  U42(isNeList(activate(V2)))
        
                        U42(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                     U51(tt(),V2) =  [1] V2 + [1]               
                                  >= [1] V2 + [1]               
                                  =  U52(isList(activate(V2)))  
        
                        U52(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                        U61(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      U71(tt(),P) =  [1] P + [2]                
                                  >= [1] P + [1]                
                                  =  U72(isPal(activate(P)))    
        
                        U72(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                        U81(tt()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      __(X,nil()) =  [1] X + [5]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  n____(X1,X2)               
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [2]
                                  >= [1] X + [1] Y + [1] Z + [2]
                                  =  __(X,__(Y,Z))              
        
                      __(nil(),X) =  [1] X + [5]                
                                  >= [1] X + [0]                
                                  =  X                          
        
                              a() =  [0]                        
                                  >= [0]                        
                                  =  n__a()                     
        
                      activate(X) =  [1] X + [0]                
                                  >= [1] X + [0]                
                                  =  X                          
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [1]      
                                  >= [1] X1 + [1] X2 + [1]      
                                  =  __(X1,X2)                  
        
                 activate(n__a()) =  [0]                        
                                  >= [0]                        
                                  =  a()                        
        
                 activate(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  e()                        
        
                 activate(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  i()                        
        
               activate(n__nil()) =  [5]                        
                                  >= [4]                        
                                  =  nil()                      
        
                 activate(n__o()) =  [1]                        
                                  >= [0]                        
                                  =  o()                        
        
                 activate(n__u()) =  [0]                        
                                  >= [0]                        
                                  =  u()                        
        
                              e() =  [0]                        
                                  >= [0]                        
                                  =  n__e()                     
        
                              i() =  [0]                        
                                  >= [0]                        
                                  =  n__i()                     
        
                        isList(V) =  [1] V + [1]                
                                  >= [1] V + [0]                
                                  =  U11(isNeList(activate(V))) 
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [2]      
                                  >= [1] V1 + [1] V2 + [2]      
                                  =  U21(isList(activate(V1))   
                                        ,activate(V2))          
        
                 isList(n__nil()) =  [6]                        
                                  >= [0]                        
                                  =  tt()                       
        
                      isNeList(V) =  [1] V + [0]                
                                  >= [1] V + [0]                
                                  =  U31(isQid(activate(V)))    
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [1]      
                                  >= [1] V1 + [1] V2 + [1]      
                                  =  U41(isList(activate(V1))   
                                        ,activate(V2))          
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [1]      
                                  >= [1] V1 + [1] V2 + [1]      
                                  =  U51(isNeList(activate(V1)) 
                                        ,activate(V2))          
        
                       isNePal(V) =  [1] V + [0]                
                                  >= [1] V + [0]                
                                  =  U61(isQid(activate(V)))    
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [2]        
                                  >= [1] I + [1] P + [2]        
                                  =  U71(isQid(activate(I))     
                                        ,activate(P))           
        
                  isPal(n__nil()) =  [6]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__a()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__e()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__i()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__o()) =  [1]                        
                                  >= [0]                        
                                  =  tt()                       
        
                    isQid(n__u()) =  [0]                        
                                  >= [0]                        
                                  =  tt()                       
        
                            nil() =  [4]                        
                                  >= [5]                        
                                  =  n__nil()                   
        
                              o() =  [0]                        
                                  >= [1]                        
                                  =  n__o()                     
        
                              u() =  [0]                        
                                  >= [0]                        
                                  =  n__u()                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__i()) -> i()
        activate(n__u()) -> u()
        e() -> n__e()
        nil() -> n__nil()
        o() -> n__o()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [0]         
               p(U21) = [1] x1 + [1] x2 + [1]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [0]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [0]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [6]
               p(U72) = [1] x1 + [6]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [5]
                 p(a) = [4]                  
          p(activate) = [1] x1 + [1]         
                 p(e) = [0]                  
                 p(i) = [4]                  
            p(isList) = [1] x1 + [5]         
          p(isNeList) = [1] x1 + [4]         
           p(isNePal) = [1] x1 + [4]         
             p(isPal) = [1] x1 + [5]         
             p(isQid) = [1] x1 + [3]         
             p(n____) = [1] x1 + [1] x2 + [3]
              p(n__a) = [3]                  
              p(n__e) = [5]                  
              p(n__i) = [4]                  
            p(n__nil) = [3]                  
              p(n__o) = [6]                  
              p(n__u) = [6]                  
               p(nil) = [0]                  
                 p(o) = [7]                  
                p(tt) = [6]                  
                 p(u) = [6]                  
        
        Following rules are strictly oriented:
                     a() = [4]        
                         > [3]        
                         = n__a()     
        
             activate(X) = [1] X + [1]
                         > [1] X + [0]
                         = X          
        
        activate(n__i()) = [5]        
                         > [4]        
                         = i()        
        
        activate(n__u()) = [7]        
                         > [6]        
                         = u()        
        
                     o() = [7]        
                         > [6]        
                         = n__o()     
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                     U21(tt(),V2) =  [1] V2 + [7]                
                                  >= [1] V2 + [6]                
                                  =  U22(isList(activate(V2)))   
        
                        U22(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                        U31(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                     U41(tt(),V2) =  [1] V2 + [6]                
                                  >= [1] V2 + [5]                
                                  =  U42(isNeList(activate(V2))) 
        
                        U42(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                     U51(tt(),V2) =  [1] V2 + [6]                
                                  >= [1] V2 + [6]                
                                  =  U52(isList(activate(V2)))   
        
                        U52(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                        U61(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                      U71(tt(),P) =  [1] P + [12]                
                                  >= [1] P + [12]                
                                  =  U72(isPal(activate(P)))     
        
                        U72(tt()) =  [12]                        
                                  >= [6]                         
                                  =  tt()                        
        
                        U81(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                      __(X,nil()) =  [1] X + [5]                 
                                  >= [1] X + [0]                 
                                  =  X                           
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [5]       
                                  >= [1] X1 + [1] X2 + [3]       
                                  =  n____(X1,X2)                
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [10]
                                  >= [1] X + [1] Y + [1] Z + [10]
                                  =  __(X,__(Y,Z))               
        
                      __(nil(),X) =  [1] X + [5]                 
                                  >= [1] X + [0]                 
                                  =  X                           
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [4]       
                                  >= [1] X1 + [1] X2 + [5]       
                                  =  __(X1,X2)                   
        
                 activate(n__a()) =  [4]                         
                                  >= [4]                         
                                  =  a()                         
        
                 activate(n__e()) =  [6]                         
                                  >= [0]                         
                                  =  e()                         
        
               activate(n__nil()) =  [4]                         
                                  >= [0]                         
                                  =  nil()                       
        
                 activate(n__o()) =  [7]                         
                                  >= [7]                         
                                  =  o()                         
        
                              e() =  [0]                         
                                  >= [5]                         
                                  =  n__e()                      
        
                              i() =  [4]                         
                                  >= [4]                         
                                  =  n__i()                      
        
                        isList(V) =  [1] V + [5]                 
                                  >= [1] V + [5]                 
                                  =  U11(isNeList(activate(V)))  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]       
                                  >= [1] V1 + [1] V2 + [8]       
                                  =  U21(isList(activate(V1))    
                                        ,activate(V2))           
        
                 isList(n__nil()) =  [8]                         
                                  >= [6]                         
                                  =  tt()                        
        
                      isNeList(V) =  [1] V + [4]                 
                                  >= [1] V + [4]                 
                                  =  U31(isQid(activate(V)))     
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [7]       
                                  >= [1] V1 + [1] V2 + [7]       
                                  =  U41(isList(activate(V1))    
                                        ,activate(V2))           
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [7]       
                                  >= [1] V1 + [1] V2 + [6]       
                                  =  U51(isNeList(activate(V1))  
                                        ,activate(V2))           
        
                       isNePal(V) =  [1] V + [4]                 
                                  >= [1] V + [4]                 
                                  =  U61(isQid(activate(V)))     
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [12]        
                                  >= [1] I + [1] P + [11]        
                                  =  U71(isQid(activate(I))      
                                        ,activate(P))            
        
                         isPal(V) =  [1] V + [5]                 
                                  >= [1] V + [5]                 
                                  =  U81(isNePal(activate(V)))   
        
                  isPal(n__nil()) =  [8]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__a()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__e()) =  [8]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__i()) =  [7]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__o()) =  [9]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__u()) =  [9]                         
                                  >= [6]                         
                                  =  tt()                        
        
                            nil() =  [0]                         
                                  >= [3]                         
                                  =  n__nil()                    
        
                              u() =  [6]                         
                                  >= [6]                         
                                  =  n__u()                      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        activate(n____(X1,X2)) -> __(X1,X2)
        e() -> n__e()
        nil() -> n__nil()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [0]         
               p(U21) = [1] x1 + [1] x2 + [2]
               p(U22) = [1] x1 + [2]         
               p(U31) = [1] x1 + [0]         
               p(U41) = [1] x1 + [1] x2 + [0]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [0]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [3]
               p(U72) = [1] x1 + [0]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [6]
                 p(a) = [6]                  
          p(activate) = [1] x1 + [2]         
                 p(e) = [0]                  
                 p(i) = [6]                  
            p(isList) = [1] x1 + [4]         
          p(isNeList) = [1] x1 + [2]         
           p(isNePal) = [1] x1 + [2]         
             p(isPal) = [1] x1 + [4]         
             p(isQid) = [1] x1 + [0]         
             p(n____) = [1] x1 + [1] x2 + [6]
              p(n__a) = [6]                  
              p(n__e) = [6]                  
              p(n__i) = [6]                  
            p(n__nil) = [4]                  
              p(n__o) = [7]                  
              p(n__u) = [6]                  
               p(nil) = [5]                  
                 p(o) = [7]                  
                p(tt) = [6]                  
                 p(u) = [7]                  
        
        Following rules are strictly oriented:
        activate(n____(X1,X2)) = [1] X1 + [1] X2 + [8]
                               > [1] X1 + [1] X2 + [6]
                               = __(X1,X2)            
        
                         nil() = [5]                  
                               > [4]                  
                               = n__nil()             
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                     U21(tt(),V2) =  [1] V2 + [8]                
                                  >= [1] V2 + [8]                
                                  =  U22(isList(activate(V2)))   
        
                        U22(tt()) =  [8]                         
                                  >= [6]                         
                                  =  tt()                        
        
                        U31(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                     U41(tt(),V2) =  [1] V2 + [6]                
                                  >= [1] V2 + [4]                
                                  =  U42(isNeList(activate(V2))) 
        
                        U42(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                     U51(tt(),V2) =  [1] V2 + [6]                
                                  >= [1] V2 + [6]                
                                  =  U52(isList(activate(V2)))   
        
                        U52(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                        U61(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                      U71(tt(),P) =  [1] P + [9]                 
                                  >= [1] P + [6]                 
                                  =  U72(isPal(activate(P)))     
        
                        U72(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                        U81(tt()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                      __(X,nil()) =  [1] X + [11]                
                                  >= [1] X + [0]                 
                                  =  X                           
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [6]       
                                  >= [1] X1 + [1] X2 + [6]       
                                  =  n____(X1,X2)                
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [12]
                                  >= [1] X + [1] Y + [1] Z + [12]
                                  =  __(X,__(Y,Z))               
        
                      __(nil(),X) =  [1] X + [11]                
                                  >= [1] X + [0]                 
                                  =  X                           
        
                              a() =  [6]                         
                                  >= [6]                         
                                  =  n__a()                      
        
                      activate(X) =  [1] X + [2]                 
                                  >= [1] X + [0]                 
                                  =  X                           
        
                 activate(n__a()) =  [8]                         
                                  >= [6]                         
                                  =  a()                         
        
                 activate(n__e()) =  [8]                         
                                  >= [0]                         
                                  =  e()                         
        
                 activate(n__i()) =  [8]                         
                                  >= [6]                         
                                  =  i()                         
        
               activate(n__nil()) =  [6]                         
                                  >= [5]                         
                                  =  nil()                       
        
                 activate(n__o()) =  [9]                         
                                  >= [7]                         
                                  =  o()                         
        
                 activate(n__u()) =  [8]                         
                                  >= [7]                         
                                  =  u()                         
        
                              e() =  [0]                         
                                  >= [6]                         
                                  =  n__e()                      
        
                              i() =  [6]                         
                                  >= [6]                         
                                  =  n__i()                      
        
                        isList(V) =  [1] V + [4]                 
                                  >= [1] V + [4]                 
                                  =  U11(isNeList(activate(V)))  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [10]      
                                  >= [1] V1 + [1] V2 + [10]      
                                  =  U21(isList(activate(V1))    
                                        ,activate(V2))           
        
                 isList(n__nil()) =  [8]                         
                                  >= [6]                         
                                  =  tt()                        
        
                      isNeList(V) =  [1] V + [2]                 
                                  >= [1] V + [2]                 
                                  =  U31(isQid(activate(V)))     
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]       
                                  >= [1] V1 + [1] V2 + [8]       
                                  =  U41(isList(activate(V1))    
                                        ,activate(V2))           
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [8]       
                                  >= [1] V1 + [1] V2 + [6]       
                                  =  U51(isNeList(activate(V1))  
                                        ,activate(V2))           
        
                       isNePal(V) =  [1] V + [2]                 
                                  >= [1] V + [2]                 
                                  =  U61(isQid(activate(V)))     
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [14]        
                                  >= [1] I + [1] P + [7]         
                                  =  U71(isQid(activate(I))      
                                        ,activate(P))            
        
                         isPal(V) =  [1] V + [4]                 
                                  >= [1] V + [4]                 
                                  =  U81(isNePal(activate(V)))   
        
                  isPal(n__nil()) =  [8]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__a()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__e()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__i()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__o()) =  [7]                         
                                  >= [6]                         
                                  =  tt()                        
        
                    isQid(n__u()) =  [6]                         
                                  >= [6]                         
                                  =  tt()                        
        
                              o() =  [7]                         
                                  >= [7]                         
                                  =  n__o()                      
        
                              u() =  [7]                         
                                  >= [6]                         
                                  =  n__u()                      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        e() -> n__e()
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(U11) = {1},
          uargs(U21) = {1,2},
          uargs(U22) = {1},
          uargs(U31) = {1},
          uargs(U41) = {1,2},
          uargs(U42) = {1},
          uargs(U51) = {1,2},
          uargs(U52) = {1},
          uargs(U61) = {1},
          uargs(U71) = {1,2},
          uargs(U72) = {1},
          uargs(U81) = {1},
          uargs(__) = {2},
          uargs(activate) = {1},
          uargs(isList) = {1},
          uargs(isNeList) = {1},
          uargs(isNePal) = {1},
          uargs(isPal) = {1},
          uargs(isQid) = {1},
          uargs(n____) = {2}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
               p(U11) = [1] x1 + [1]         
               p(U21) = [1] x1 + [1] x2 + [5]
               p(U22) = [1] x1 + [0]         
               p(U31) = [1] x1 + [1]         
               p(U41) = [1] x1 + [1] x2 + [3]
               p(U42) = [1] x1 + [0]         
               p(U51) = [1] x1 + [1] x2 + [5]
               p(U52) = [1] x1 + [0]         
               p(U61) = [1] x1 + [0]         
               p(U71) = [1] x1 + [1] x2 + [6]
               p(U72) = [1] x1 + [0]         
               p(U81) = [1] x1 + [0]         
                p(__) = [1] x1 + [1] x2 + [7]
                 p(a) = [4]                  
          p(activate) = [1] x1 + [1]         
                 p(e) = [3]                  
                 p(i) = [2]                  
            p(isList) = [1] x1 + [4]         
          p(isNeList) = [1] x1 + [2]         
           p(isNePal) = [1] x1 + [1]         
             p(isPal) = [1] x1 + [5]         
             p(isQid) = [1] x1 + [0]         
             p(n____) = [1] x1 + [1] x2 + [7]
              p(n__a) = [4]                  
              p(n__e) = [2]                  
              p(n__i) = [1]                  
            p(n__nil) = [0]                  
              p(n__o) = [0]                  
              p(n__u) = [0]                  
               p(nil) = [0]                  
                 p(o) = [0]                  
                p(tt) = [0]                  
                 p(u) = [0]                  
        
        Following rules are strictly oriented:
        e() = [3]   
            > [2]   
            = n__e()
        
        
        Following rules are (at-least) weakly oriented:
                        U11(tt()) =  [1]                         
                                  >= [0]                         
                                  =  tt()                        
        
                     U21(tt(),V2) =  [1] V2 + [5]                
                                  >= [1] V2 + [5]                
                                  =  U22(isList(activate(V2)))   
        
                        U22(tt()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                        U31(tt()) =  [1]                         
                                  >= [0]                         
                                  =  tt()                        
        
                     U41(tt(),V2) =  [1] V2 + [3]                
                                  >= [1] V2 + [3]                
                                  =  U42(isNeList(activate(V2))) 
        
                        U42(tt()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                     U51(tt(),V2) =  [1] V2 + [5]                
                                  >= [1] V2 + [5]                
                                  =  U52(isList(activate(V2)))   
        
                        U52(tt()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                        U61(tt()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                      U71(tt(),P) =  [1] P + [6]                 
                                  >= [1] P + [6]                 
                                  =  U72(isPal(activate(P)))     
        
                        U72(tt()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                        U81(tt()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                      __(X,nil()) =  [1] X + [7]                 
                                  >= [1] X + [0]                 
                                  =  X                           
        
                        __(X1,X2) =  [1] X1 + [1] X2 + [7]       
                                  >= [1] X1 + [1] X2 + [7]       
                                  =  n____(X1,X2)                
        
                    __(__(X,Y),Z) =  [1] X + [1] Y + [1] Z + [14]
                                  >= [1] X + [1] Y + [1] Z + [14]
                                  =  __(X,__(Y,Z))               
        
                      __(nil(),X) =  [1] X + [7]                 
                                  >= [1] X + [0]                 
                                  =  X                           
        
                              a() =  [4]                         
                                  >= [4]                         
                                  =  n__a()                      
        
                      activate(X) =  [1] X + [1]                 
                                  >= [1] X + [0]                 
                                  =  X                           
        
           activate(n____(X1,X2)) =  [1] X1 + [1] X2 + [8]       
                                  >= [1] X1 + [1] X2 + [7]       
                                  =  __(X1,X2)                   
        
                 activate(n__a()) =  [5]                         
                                  >= [4]                         
                                  =  a()                         
        
                 activate(n__e()) =  [3]                         
                                  >= [3]                         
                                  =  e()                         
        
                 activate(n__i()) =  [2]                         
                                  >= [2]                         
                                  =  i()                         
        
               activate(n__nil()) =  [1]                         
                                  >= [0]                         
                                  =  nil()                       
        
                 activate(n__o()) =  [1]                         
                                  >= [0]                         
                                  =  o()                         
        
                 activate(n__u()) =  [1]                         
                                  >= [0]                         
                                  =  u()                         
        
                              i() =  [2]                         
                                  >= [1]                         
                                  =  n__i()                      
        
                        isList(V) =  [1] V + [4]                 
                                  >= [1] V + [4]                 
                                  =  U11(isNeList(activate(V)))  
        
             isList(n____(V1,V2)) =  [1] V1 + [1] V2 + [11]      
                                  >= [1] V1 + [1] V2 + [11]      
                                  =  U21(isList(activate(V1))    
                                        ,activate(V2))           
        
                 isList(n__nil()) =  [4]                         
                                  >= [0]                         
                                  =  tt()                        
        
                      isNeList(V) =  [1] V + [2]                 
                                  >= [1] V + [2]                 
                                  =  U31(isQid(activate(V)))     
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]       
                                  >= [1] V1 + [1] V2 + [9]       
                                  =  U41(isList(activate(V1))    
                                        ,activate(V2))           
        
           isNeList(n____(V1,V2)) =  [1] V1 + [1] V2 + [9]       
                                  >= [1] V1 + [1] V2 + [9]       
                                  =  U51(isNeList(activate(V1))  
                                        ,activate(V2))           
        
                       isNePal(V) =  [1] V + [1]                 
                                  >= [1] V + [1]                 
                                  =  U61(isQid(activate(V)))     
        
        isNePal(n____(I,__(P,I))) =  [2] I + [1] P + [15]        
                                  >= [1] I + [1] P + [8]         
                                  =  U71(isQid(activate(I))      
                                        ,activate(P))            
        
                         isPal(V) =  [1] V + [5]                 
                                  >= [1] V + [2]                 
                                  =  U81(isNePal(activate(V)))   
        
                  isPal(n__nil()) =  [5]                         
                                  >= [0]                         
                                  =  tt()                        
        
                    isQid(n__a()) =  [4]                         
                                  >= [0]                         
                                  =  tt()                        
        
                    isQid(n__e()) =  [2]                         
                                  >= [0]                         
                                  =  tt()                        
        
                    isQid(n__i()) =  [1]                         
                                  >= [0]                         
                                  =  tt()                        
        
                    isQid(n__o()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                    isQid(n__u()) =  [0]                         
                                  >= [0]                         
                                  =  tt()                        
        
                            nil() =  [0]                         
                                  >= [0]                         
                                  =  n__nil()                    
        
                              o() =  [0]                         
                                  >= [0]                         
                                  =  n__o()                      
        
                              u() =  [0]                         
                                  >= [0]                         
                                  =  n__u()                      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        __(__(X,Y),Z) -> __(X,__(Y,Z))
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      NaturalMI {miDimension = 2, miDegree = 2, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation:
      The following argument positions are considered usable:
        uargs(U11) = {1},
        uargs(U21) = {1,2},
        uargs(U22) = {1},
        uargs(U31) = {1},
        uargs(U41) = {1,2},
        uargs(U42) = {1},
        uargs(U51) = {1,2},
        uargs(U52) = {1},
        uargs(U61) = {1},
        uargs(U71) = {1,2},
        uargs(U72) = {1},
        uargs(U81) = {1},
        uargs(__) = {2},
        uargs(activate) = {1},
        uargs(isList) = {1},
        uargs(isNeList) = {1},
        uargs(isNePal) = {1},
        uargs(isPal) = {1},
        uargs(isQid) = {1},
        uargs(n____) = {2}
      
      Following symbols are considered usable:
        {}
      TcT has computed the following interpretation:
             p(U11) = [1 0] x1 + [0]           
                      [0 2]      [1]           
             p(U21) = [1 0] x1 + [2 0] x2 + [0]
                      [0 0]      [0 0]      [1]
             p(U22) = [1 0] x1 + [0]           
                      [0 0]      [1]           
             p(U31) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(U41) = [1 0] x1 + [2 0] x2 + [0]
                      [0 0]      [1 0]      [0]
             p(U42) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(U51) = [1 0] x1 + [2 0] x2 + [0]
                      [0 0]      [0 0]      [0]
             p(U52) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(U61) = [1 0] x1 + [1]           
                      [0 0]      [0]           
             p(U71) = [2 0] x1 + [2 0] x2 + [2]
                      [0 0]      [0 0]      [0]
             p(U72) = [1 0] x1 + [0]           
                      [0 0]      [0]           
             p(U81) = [1 0] x1 + [0]           
                      [1 0]      [1]           
              p(__) = [1 2] x1 + [1 0] x2 + [0]
                      [0 1]      [0 1]      [2]
               p(a) = [0]                      
                      [0]                      
        p(activate) = [1 0] x1 + [0]           
                      [2 2]      [0]           
               p(e) = [1]                      
                      [1]                      
               p(i) = [0]                      
                      [2]                      
          p(isList) = [2 0] x1 + [0]           
                      [2 0]      [1]           
        p(isNeList) = [2 0] x1 + [0]           
                      [1 0]      [0]           
         p(isNePal) = [2 0] x1 + [2]           
                      [0 0]      [0]           
           p(isPal) = [2 0] x1 + [2]           
                      [2 1]      [3]           
           p(isQid) = [2 0] x1 + [0]           
                      [0 0]      [0]           
           p(n____) = [1 2] x1 + [1 0] x2 + [0]
                      [0 0]      [0 1]      [2]
            p(n__a) = [0]                      
                      [0]                      
            p(n__e) = [1]                      
                      [1]                      
            p(n__i) = [0]                      
                      [1]                      
          p(n__nil) = [0]                      
                      [0]                      
            p(n__o) = [3]                      
                      [0]                      
            p(n__u) = [0]                      
                      [0]                      
             p(nil) = [0]                      
                      [0]                      
               p(o) = [3]                      
                      [0]                      
              p(tt) = [0]                      
                      [0]                      
               p(u) = [0]                      
                      [0]                      
      
      Following rules are strictly oriented:
      __(__(X,Y),Z) = [1 4] X + [1 2] Y + [1
                      0] Z + [4]            
                      [0 1]     [0 1]     [0
                      1]     [4]            
                    > [1 2] X + [1 2] Y + [1
                      0] Z + [0]            
                      [0 1]     [0 1]     [0
                      1]     [4]            
                    = __(X,__(Y,Z))         
      
      
      Following rules are (at-least) weakly oriented:
                      U11(tt()) =  [0]                        
                                   [1]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                   U21(tt(),V2) =  [2 0] V2 + [0]             
                                   [0 0]      [1]             
                                >= [2 0] V2 + [0]             
                                   [0 0]      [1]             
                                =  U22(isList(activate(V2)))  
      
                      U22(tt()) =  [0]                        
                                   [1]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                      U31(tt()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                   U41(tt(),V2) =  [2 0] V2 + [0]             
                                   [1 0]      [0]             
                                >= [2 0] V2 + [0]             
                                   [0 0]      [0]             
                                =  U42(isNeList(activate(V2)))
      
                      U42(tt()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                   U51(tt(),V2) =  [2 0] V2 + [0]             
                                   [0 0]      [0]             
                                >= [2 0] V2 + [0]             
                                   [0 0]      [0]             
                                =  U52(isList(activate(V2)))  
      
                      U52(tt()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                      U61(tt()) =  [1]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                    U71(tt(),P) =  [2 0] P + [2]              
                                   [0 0]     [0]              
                                >= [2 0] P + [2]              
                                   [0 0]     [0]              
                                =  U72(isPal(activate(P)))    
      
                      U72(tt()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                      U81(tt()) =  [0]                        
                                   [1]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                    __(X,nil()) =  [1 2] X + [0]              
                                   [0 1]     [2]              
                                >= [1 0] X + [0]              
                                   [0 1]     [0]              
                                =  X                          
      
                      __(X1,X2) =  [1 2] X1 + [1 0] X2 + [0]  
                                   [0 1]      [0 1]      [2]  
                                >= [1 2] X1 + [1 0] X2 + [0]  
                                   [0 0]      [0 1]      [2]  
                                =  n____(X1,X2)               
      
                    __(nil(),X) =  [1 0] X + [0]              
                                   [0 1]     [2]              
                                >= [1 0] X + [0]              
                                   [0 1]     [0]              
                                =  X                          
      
                            a() =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  n__a()                     
      
                    activate(X) =  [1 0] X + [0]              
                                   [2 2]     [0]              
                                >= [1 0] X + [0]              
                                   [0 1]     [0]              
                                =  X                          
      
         activate(n____(X1,X2)) =  [1 2] X1 + [1 0] X2 + [0]  
                                   [2 4]      [2 2]      [4]  
                                >= [1 2] X1 + [1 0] X2 + [0]  
                                   [0 1]      [0 1]      [2]  
                                =  __(X1,X2)                  
      
               activate(n__a()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  a()                        
      
               activate(n__e()) =  [1]                        
                                   [4]                        
                                >= [1]                        
                                   [1]                        
                                =  e()                        
      
               activate(n__i()) =  [0]                        
                                   [2]                        
                                >= [0]                        
                                   [2]                        
                                =  i()                        
      
             activate(n__nil()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  nil()                      
      
               activate(n__o()) =  [3]                        
                                   [6]                        
                                >= [3]                        
                                   [0]                        
                                =  o()                        
      
               activate(n__u()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  u()                        
      
                            e() =  [1]                        
                                   [1]                        
                                >= [1]                        
                                   [1]                        
                                =  n__e()                     
      
                            i() =  [0]                        
                                   [2]                        
                                >= [0]                        
                                   [1]                        
                                =  n__i()                     
      
                      isList(V) =  [2 0] V + [0]              
                                   [2 0]     [1]              
                                >= [2 0] V + [0]              
                                   [2 0]     [1]              
                                =  U11(isNeList(activate(V))) 
      
           isList(n____(V1,V2)) =  [2 4] V1 + [2 0] V2 + [0]  
                                   [2 4]      [2 0]      [1]  
                                >= [2 0] V1 + [2 0] V2 + [0]  
                                   [0 0]      [0 0]      [1]  
                                =  U21(isList(activate(V1))   
                                      ,activate(V2))          
      
               isList(n__nil()) =  [0]                        
                                   [1]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                    isNeList(V) =  [2 0] V + [0]              
                                   [1 0]     [0]              
                                >= [2 0] V + [0]              
                                   [0 0]     [0]              
                                =  U31(isQid(activate(V)))    
      
         isNeList(n____(V1,V2)) =  [2 4] V1 + [2 0] V2 + [0]  
                                   [1 2]      [1 0]      [0]  
                                >= [2 0] V1 + [2 0] V2 + [0]  
                                   [0 0]      [1 0]      [0]  
                                =  U41(isList(activate(V1))   
                                      ,activate(V2))          
      
         isNeList(n____(V1,V2)) =  [2 4] V1 + [2 0] V2 + [0]  
                                   [1 2]      [1 0]      [0]  
                                >= [2 0] V1 + [2 0] V2 + [0]  
                                   [0 0]      [0 0]      [0]  
                                =  U51(isNeList(activate(V1)) 
                                      ,activate(V2))          
      
                     isNePal(V) =  [2 0] V + [2]              
                                   [0 0]     [0]              
                                >= [2 0] V + [1]              
                                   [0 0]     [0]              
                                =  U61(isQid(activate(V)))    
      
      isNePal(n____(I,__(P,I))) =  [4 4] I + [2 4] P + [2]    
                                   [0 0]     [0 0]     [0]    
                                >= [4 0] I + [2 0] P + [2]    
                                   [0 0]     [0 0]     [0]    
                                =  U71(isQid(activate(I))     
                                      ,activate(P))           
      
                       isPal(V) =  [2 0] V + [2]              
                                   [2 1]     [3]              
                                >= [2 0] V + [2]              
                                   [2 0]     [3]              
                                =  U81(isNePal(activate(V)))  
      
                isPal(n__nil()) =  [2]                        
                                   [3]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                  isQid(n__a()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                  isQid(n__e()) =  [2]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                  isQid(n__i()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                  isQid(n__o()) =  [6]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                  isQid(n__u()) =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  tt()                       
      
                          nil() =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  n__nil()                   
      
                            o() =  [3]                        
                                   [0]                        
                                >= [3]                        
                                   [0]                        
                                =  n__o()                     
      
                            u() =  [0]                        
                                   [0]                        
                                >= [0]                        
                                   [0]                        
                                =  n__u()                     
      
*** 1.1.1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        U11(tt()) -> tt()
        U21(tt(),V2) -> U22(isList(activate(V2)))
        U22(tt()) -> tt()
        U31(tt()) -> tt()
        U41(tt(),V2) -> U42(isNeList(activate(V2)))
        U42(tt()) -> tt()
        U51(tt(),V2) -> U52(isList(activate(V2)))
        U52(tt()) -> tt()
        U61(tt()) -> tt()
        U71(tt(),P) -> U72(isPal(activate(P)))
        U72(tt()) -> tt()
        U81(tt()) -> tt()
        __(X,nil()) -> X
        __(X1,X2) -> n____(X1,X2)
        __(__(X,Y),Z) -> __(X,__(Y,Z))
        __(nil(),X) -> X
        a() -> n__a()
        activate(X) -> X
        activate(n____(X1,X2)) -> __(X1,X2)
        activate(n__a()) -> a()
        activate(n__e()) -> e()
        activate(n__i()) -> i()
        activate(n__nil()) -> nil()
        activate(n__o()) -> o()
        activate(n__u()) -> u()
        e() -> n__e()
        i() -> n__i()
        isList(V) -> U11(isNeList(activate(V)))
        isList(n____(V1,V2)) -> U21(isList(activate(V1)),activate(V2))
        isList(n__nil()) -> tt()
        isNeList(V) -> U31(isQid(activate(V)))
        isNeList(n____(V1,V2)) -> U41(isList(activate(V1)),activate(V2))
        isNeList(n____(V1,V2)) -> U51(isNeList(activate(V1)),activate(V2))
        isNePal(V) -> U61(isQid(activate(V)))
        isNePal(n____(I,__(P,I))) -> U71(isQid(activate(I)),activate(P))
        isPal(V) -> U81(isNePal(activate(V)))
        isPal(n__nil()) -> tt()
        isQid(n__a()) -> tt()
        isQid(n__e()) -> tt()
        isQid(n__i()) -> tt()
        isQid(n__o()) -> tt()
        isQid(n__u()) -> tt()
        nil() -> n__nil()
        o() -> n__o()
        u() -> n__u()
      Signature:
        {U11/1,U21/2,U22/1,U31/1,U41/2,U42/1,U51/2,U52/1,U61/1,U71/2,U72/1,U81/1,__/2,a/0,activate/1,e/0,i/0,isList/1,isNeList/1,isNePal/1,isPal/1,isQid/1,nil/0,o/0,u/0} / {n____/2,n__a/0,n__e/0,n__i/0,n__nil/0,n__o/0,n__u/0,tt/0}
      Obligation:
        Full
        basic terms: {U11,U21,U22,U31,U41,U42,U51,U52,U61,U71,U72,U81,__,a,activate,e,i,isList,isNeList,isNePal,isPal,isQid,nil,o,u}/{n____,n__a,n__e,n__i,n__nil,n__o,n__u,tt}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).