(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
active(__(__(X, Y), Z)) → mark(__(X, __(Y, Z)))
active(__(X, nil)) → mark(X)
active(__(nil, X)) → mark(X)
active(U11(tt, V)) → mark(U12(isNeList(V)))
active(U12(tt)) → mark(tt)
active(U21(tt, V1, V2)) → mark(U22(isList(V1), V2))
active(U22(tt, V2)) → mark(U23(isList(V2)))
active(U23(tt)) → mark(tt)
active(U31(tt, V)) → mark(U32(isQid(V)))
active(U32(tt)) → mark(tt)
active(U41(tt, V1, V2)) → mark(U42(isList(V1), V2))
active(U42(tt, V2)) → mark(U43(isNeList(V2)))
active(U43(tt)) → mark(tt)
active(U51(tt, V1, V2)) → mark(U52(isNeList(V1), V2))
active(U52(tt, V2)) → mark(U53(isList(V2)))
active(U53(tt)) → mark(tt)
active(U61(tt, V)) → mark(U62(isQid(V)))
active(U62(tt)) → mark(tt)
active(U71(tt, V)) → mark(U72(isNePal(V)))
active(U72(tt)) → mark(tt)
active(and(tt, X)) → mark(X)
active(isList(V)) → mark(U11(isPalListKind(V), V))
active(isList(nil)) → mark(tt)
active(isList(__(V1, V2))) → mark(U21(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(V)) → mark(U31(isPalListKind(V), V))
active(isNeList(__(V1, V2))) → mark(U41(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNeList(__(V1, V2))) → mark(U51(and(isPalListKind(V1), isPalListKind(V2)), V1, V2))
active(isNePal(V)) → mark(U61(isPalListKind(V), V))
active(isNePal(__(I, __(P, I)))) → mark(and(and(isQid(I), isPalListKind(I)), and(isPal(P), isPalListKind(P))))
active(isPal(V)) → mark(U71(isPalListKind(V), V))
active(isPal(nil)) → mark(tt)
active(isPalListKind(a)) → mark(tt)
active(isPalListKind(e)) → mark(tt)
active(isPalListKind(i)) → mark(tt)
active(isPalListKind(nil)) → mark(tt)
active(isPalListKind(o)) → mark(tt)
active(isPalListKind(u)) → mark(tt)
active(isPalListKind(__(V1, V2))) → mark(and(isPalListKind(V1), isPalListKind(V2)))
active(isQid(a)) → mark(tt)
active(isQid(e)) → mark(tt)
active(isQid(i)) → mark(tt)
active(isQid(o)) → mark(tt)
active(isQid(u)) → mark(tt)
active(__(X1, X2)) → __(active(X1), X2)
active(__(X1, X2)) → __(X1, active(X2))
active(U11(X1, X2)) → U11(active(X1), X2)
active(U12(X)) → U12(active(X))
active(U21(X1, X2, X3)) → U21(active(X1), X2, X3)
active(U22(X1, X2)) → U22(active(X1), X2)
active(U23(X)) → U23(active(X))
active(U31(X1, X2)) → U31(active(X1), X2)
active(U32(X)) → U32(active(X))
active(U41(X1, X2, X3)) → U41(active(X1), X2, X3)
active(U42(X1, X2)) → U42(active(X1), X2)
active(U43(X)) → U43(active(X))
active(U51(X1, X2, X3)) → U51(active(X1), X2, X3)
active(U52(X1, X2)) → U52(active(X1), X2)
active(U53(X)) → U53(active(X))
active(U61(X1, X2)) → U61(active(X1), X2)
active(U62(X)) → U62(active(X))
active(U71(X1, X2)) → U71(active(X1), X2)
active(U72(X)) → U72(active(X))
active(and(X1, X2)) → and(active(X1), X2)
__(mark(X1), X2) → mark(__(X1, X2))
__(X1, mark(X2)) → mark(__(X1, X2))
U11(mark(X1), X2) → mark(U11(X1, X2))
U12(mark(X)) → mark(U12(X))
U21(mark(X1), X2, X3) → mark(U21(X1, X2, X3))
U22(mark(X1), X2) → mark(U22(X1, X2))
U23(mark(X)) → mark(U23(X))
U31(mark(X1), X2) → mark(U31(X1, X2))
U32(mark(X)) → mark(U32(X))
U41(mark(X1), X2, X3) → mark(U41(X1, X2, X3))
U42(mark(X1), X2) → mark(U42(X1, X2))
U43(mark(X)) → mark(U43(X))
U51(mark(X1), X2, X3) → mark(U51(X1, X2, X3))
U52(mark(X1), X2) → mark(U52(X1, X2))
U53(mark(X)) → mark(U53(X))
U61(mark(X1), X2) → mark(U61(X1, X2))
U62(mark(X)) → mark(U62(X))
U71(mark(X1), X2) → mark(U71(X1, X2))
U72(mark(X)) → mark(U72(X))
and(mark(X1), X2) → mark(and(X1, X2))
proper(__(X1, X2)) → __(proper(X1), proper(X2))
proper(nil) → ok(nil)
proper(U11(X1, X2)) → U11(proper(X1), proper(X2))
proper(tt) → ok(tt)
proper(U12(X)) → U12(proper(X))
proper(isNeList(X)) → isNeList(proper(X))
proper(U21(X1, X2, X3)) → U21(proper(X1), proper(X2), proper(X3))
proper(U22(X1, X2)) → U22(proper(X1), proper(X2))
proper(isList(X)) → isList(proper(X))
proper(U23(X)) → U23(proper(X))
proper(U31(X1, X2)) → U31(proper(X1), proper(X2))
proper(U32(X)) → U32(proper(X))
proper(isQid(X)) → isQid(proper(X))
proper(U41(X1, X2, X3)) → U41(proper(X1), proper(X2), proper(X3))
proper(U42(X1, X2)) → U42(proper(X1), proper(X2))
proper(U43(X)) → U43(proper(X))
proper(U51(X1, X2, X3)) → U51(proper(X1), proper(X2), proper(X3))
proper(U52(X1, X2)) → U52(proper(X1), proper(X2))
proper(U53(X)) → U53(proper(X))
proper(U61(X1, X2)) → U61(proper(X1), proper(X2))
proper(U62(X)) → U62(proper(X))
proper(U71(X1, X2)) → U71(proper(X1), proper(X2))
proper(U72(X)) → U72(proper(X))
proper(isNePal(X)) → isNePal(proper(X))
proper(and(X1, X2)) → and(proper(X1), proper(X2))
proper(isPalListKind(X)) → isPalListKind(proper(X))
proper(isPal(X)) → isPal(proper(X))
proper(a) → ok(a)
proper(e) → ok(e)
proper(i) → ok(i)
proper(o) → ok(o)
proper(u) → ok(u)
__(ok(X1), ok(X2)) → ok(__(X1, X2))
U11(ok(X1), ok(X2)) → ok(U11(X1, X2))
U12(ok(X)) → ok(U12(X))
isNeList(ok(X)) → ok(isNeList(X))
U21(ok(X1), ok(X2), ok(X3)) → ok(U21(X1, X2, X3))
U22(ok(X1), ok(X2)) → ok(U22(X1, X2))
isList(ok(X)) → ok(isList(X))
U23(ok(X)) → ok(U23(X))
U31(ok(X1), ok(X2)) → ok(U31(X1, X2))
U32(ok(X)) → ok(U32(X))
isQid(ok(X)) → ok(isQid(X))
U41(ok(X1), ok(X2), ok(X3)) → ok(U41(X1, X2, X3))
U42(ok(X1), ok(X2)) → ok(U42(X1, X2))
U43(ok(X)) → ok(U43(X))
U51(ok(X1), ok(X2), ok(X3)) → ok(U51(X1, X2, X3))
U52(ok(X1), ok(X2)) → ok(U52(X1, X2))
U53(ok(X)) → ok(U53(X))
U61(ok(X1), ok(X2)) → ok(U61(X1, X2))
U62(ok(X)) → ok(U62(X))
U71(ok(X1), ok(X2)) → ok(U71(X1, X2))
U72(ok(X)) → ok(U72(X))
isNePal(ok(X)) → ok(isNePal(X))
and(ok(X1), ok(X2)) → ok(and(X1, X2))
isPalListKind(ok(X)) → ok(isPalListKind(X))
isPal(ok(X)) → ok(isPal(X))
top(mark(X)) → top(proper(X))
top(ok(X)) → top(active(X))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
__(mark(X1), X2) →+ mark(__(X1, X2))
gives rise to a decreasing loop by considering the right hand sides subterm at position [0].
The pumping substitution is [X1 / mark(X1)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)