(0) Obligation:

Runtime Complexity TRS:
The TRS R consists of the following rules:

incr(nil) → nil
incr(cons(X, L)) → cons(s(X), n__incr(activate(L)))
adx(nil) → nil
adx(cons(X, L)) → incr(cons(X, n__adx(activate(L))))
natsadx(zeros)
zeroscons(0, n__zeros)
head(cons(X, L)) → X
tail(cons(X, L)) → activate(L)
incr(X) → n__incr(X)
adx(X) → n__adx(X)
zerosn__zeros
activate(n__incr(X)) → incr(activate(X))
activate(n__adx(X)) → adx(activate(X))
activate(n__zeros) → zeros
activate(X) → X

Rewrite Strategy: FULL

(1) DecreasingLoopProof (EQUIVALENT transformation)

The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
incr(cons(X, n__incr(X37_1))) →+ cons(s(X), n__incr(incr(X37_1)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,0].
The pumping substitution is [X37_1 / cons(X, n__incr(X37_1))].
The result substitution is [ ].

(2) BOUNDS(n^1, INF)