*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a__f(X) -> f(X)
a__f(X) -> g(h(f(X)))
mark(f(X)) -> a__f(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__f/1,mark/1} / {f/1,g/1,h/1}
Obligation:
Full
basic terms: {a__f,mark}/{f,g,h}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a__f(X) -> f(X)
a__f(X) -> g(h(f(X)))
mark(f(X)) -> a__f(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__f/1,mark/1} / {f/1,g/1,h/1}
Obligation:
Innermost
basic terms: {a__f,mark}/{f,g,h}
Applied Processor:
Bounds {initialAutomaton = perSymbol, enrichment = match}
Proof:
The problem is match-bounded by 2.
The enriched problem is compatible with follwoing automaton.
a__f_0(2) -> 1
a__f_0(3) -> 1
a__f_0(4) -> 1
a__f_1(7) -> 5
a__f_1(7) -> 7
f_0(2) -> 2
f_0(3) -> 2
f_0(4) -> 2
f_1(2) -> 1
f_1(3) -> 1
f_1(4) -> 1
f_2(7) -> 5
f_2(7) -> 7
g_0(2) -> 3
g_0(3) -> 3
g_0(4) -> 3
g_1(2) -> 5
g_1(2) -> 7
g_1(3) -> 5
g_1(3) -> 7
g_1(4) -> 5
g_1(4) -> 7
g_1(6) -> 1
g_2(8) -> 5
g_2(8) -> 7
h_0(2) -> 4
h_0(3) -> 4
h_0(4) -> 4
h_1(1) -> 6
h_1(7) -> 5
h_1(7) -> 7
h_2(5) -> 8
mark_0(2) -> 5
mark_0(3) -> 5
mark_0(4) -> 5
mark_1(2) -> 7
mark_1(3) -> 7
mark_1(4) -> 7
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
a__f(X) -> f(X)
a__f(X) -> g(h(f(X)))
mark(f(X)) -> a__f(mark(X))
mark(g(X)) -> g(X)
mark(h(X)) -> h(mark(X))
Signature:
{a__f/1,mark/1} / {f/1,g/1,h/1}
Obligation:
Innermost
basic terms: {a__f,mark}/{f,g,h}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).