*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: filter(cons(X),0(),M) -> cons(0()) filter(cons(X),s(N),M) -> cons(X) nats(N) -> cons(N) sieve(cons(0())) -> cons(0()) sieve(cons(s(N))) -> cons(s(N)) zprimes() -> sieve(nats(s(s(0())))) Weak DP Rules: Weak TRS Rules: Signature: {filter/3,nats/1,sieve/1,zprimes/0} / {0/0,cons/1,s/1} Obligation: Full basic terms: {filter,nats,sieve,zprimes}/{0,cons,s} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: filter(cons(X),0(),M) -> cons(0()) filter(cons(X),s(N),M) -> cons(X) nats(N) -> cons(N) sieve(cons(0())) -> cons(0()) sieve(cons(s(N))) -> cons(s(N)) zprimes() -> sieve(nats(s(s(0())))) Weak DP Rules: Weak TRS Rules: Signature: {filter/3,nats/1,sieve/1,zprimes/0} / {0/0,cons/1,s/1} Obligation: Innermost basic terms: {filter,nats,sieve,zprimes}/{0,cons,s} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs filter#(cons(X),0(),M) -> c_1() filter#(cons(X),s(N),M) -> c_2() nats#(N) -> c_3() sieve#(cons(0())) -> c_4() sieve#(cons(s(N))) -> c_5() zprimes#() -> c_6(sieve#(nats(s(s(0())))),nats#(s(s(0())))) Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: filter#(cons(X),0(),M) -> c_1() filter#(cons(X),s(N),M) -> c_2() nats#(N) -> c_3() sieve#(cons(0())) -> c_4() sieve#(cons(s(N))) -> c_5() zprimes#() -> c_6(sieve#(nats(s(s(0())))),nats#(s(s(0())))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: filter(cons(X),0(),M) -> cons(0()) filter(cons(X),s(N),M) -> cons(X) nats(N) -> cons(N) sieve(cons(0())) -> cons(0()) sieve(cons(s(N))) -> cons(s(N)) zprimes() -> sieve(nats(s(s(0())))) Signature: {filter/3,nats/1,sieve/1,zprimes/0,filter#/3,nats#/1,sieve#/1,zprimes#/0} / {0/0,cons/1,s/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/2} Obligation: Innermost basic terms: {filter#,nats#,sieve#,zprimes#}/{0,cons,s} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: nats(N) -> cons(N) filter#(cons(X),0(),M) -> c_1() filter#(cons(X),s(N),M) -> c_2() nats#(N) -> c_3() sieve#(cons(0())) -> c_4() sieve#(cons(s(N))) -> c_5() zprimes#() -> c_6(sieve#(nats(s(s(0())))),nats#(s(s(0())))) *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: filter#(cons(X),0(),M) -> c_1() filter#(cons(X),s(N),M) -> c_2() nats#(N) -> c_3() sieve#(cons(0())) -> c_4() sieve#(cons(s(N))) -> c_5() zprimes#() -> c_6(sieve#(nats(s(s(0())))),nats#(s(s(0())))) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: nats(N) -> cons(N) Signature: {filter/3,nats/1,sieve/1,zprimes/0,filter#/3,nats#/1,sieve#/1,zprimes#/0} / {0/0,cons/1,s/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/2} Obligation: Innermost basic terms: {filter#,nats#,sieve#,zprimes#}/{0,cons,s} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:filter#(cons(X),0(),M) -> c_1() 2:S:filter#(cons(X),s(N),M) -> c_2() 3:S:nats#(N) -> c_3() 4:S:sieve#(cons(0())) -> c_4() 5:S:sieve#(cons(s(N))) -> c_5() 6:S:zprimes#() -> c_6(sieve#(nats(s(s(0())))),nats#(s(s(0())))) -->_1 sieve#(cons(s(N))) -> c_5():5 -->_1 sieve#(cons(0())) -> c_4():4 -->_2 nats#(N) -> c_3():3 The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: nats(N) -> cons(N) Signature: {filter/3,nats/1,sieve/1,zprimes/0,filter#/3,nats#/1,sieve#/1,zprimes#/0} / {0/0,cons/1,s/1,c_1/0,c_2/0,c_3/0,c_4/0,c_5/0,c_6/2} Obligation: Innermost basic terms: {filter#,nats#,sieve#,zprimes#}/{0,cons,s} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).