We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict Trs:
  { filter(cons(X), 0(), M) -> cons(0())
  , filter(cons(X), s(N), M) -> cons(X)
  , sieve(cons(0())) -> cons(0())
  , sieve(cons(s(N))) -> cons(s(N))
  , nats(N) -> cons(N)
  , zprimes() -> sieve(nats(s(s(0())))) }
Obligation:
  runtime complexity
Answer:
  YES(O(1),O(1))

The input is overlay and right-linear. Switching to innermost
rewriting.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict Trs:
  { filter(cons(X), 0(), M) -> cons(0())
  , filter(cons(X), s(N), M) -> cons(X)
  , sieve(cons(0())) -> cons(0())
  , sieve(cons(s(N))) -> cons(s(N))
  , nats(N) -> cons(N)
  , zprimes() -> sieve(nats(s(s(0())))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We add the following weak dependency pairs:

Strict DPs:
  { filter^#(cons(X), 0(), M) -> c_1()
  , filter^#(cons(X), s(N), M) -> c_2()
  , sieve^#(cons(0())) -> c_3()
  , sieve^#(cons(s(N))) -> c_4()
  , nats^#(N) -> c_5()
  , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }

and mark the set of starting terms.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { filter^#(cons(X), 0(), M) -> c_1()
  , filter^#(cons(X), s(N), M) -> c_2()
  , sieve^#(cons(0())) -> c_3()
  , sieve^#(cons(s(N))) -> c_4()
  , nats^#(N) -> c_5()
  , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }
Strict Trs:
  { filter(cons(X), 0(), M) -> cons(0())
  , filter(cons(X), s(N), M) -> cons(X)
  , sieve(cons(0())) -> cons(0())
  , sieve(cons(s(N))) -> cons(s(N))
  , nats(N) -> cons(N)
  , zprimes() -> sieve(nats(s(s(0())))) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We replace rewrite rules by usable rules:

  Strict Usable Rules: { nats(N) -> cons(N) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { filter^#(cons(X), 0(), M) -> c_1()
  , filter^#(cons(X), s(N), M) -> c_2()
  , sieve^#(cons(0())) -> c_3()
  , sieve^#(cons(s(N))) -> c_4()
  , nats^#(N) -> c_5()
  , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }
Strict Trs: { nats(N) -> cons(N) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The weightgap principle applies (using the following constant
growth matrix-interpretation)

The following argument positions are usable:
  Uargs(sieve^#) = {1}, Uargs(c_6) = {1}

TcT has computed the following constructor-restricted matrix
interpretation.

              [cons](x1) = [0]           
                           [0]           
                                         
                     [0] = [0]           
                           [0]           
                                         
                 [s](x1) = [0]           
                           [0]           
                                         
              [nats](x1) = [2]           
                           [0]           
                                         
  [filter^#](x1, x2, x3) = [0]           
                           [0]           
                                         
                   [c_1] = [0]           
                           [0]           
                                         
                   [c_2] = [0]           
                           [0]           
                                         
           [sieve^#](x1) = [2 0] x1 + [0]
                           [0 0]      [0]
                                         
                   [c_3] = [0]           
                           [0]           
                                         
                   [c_4] = [0]           
                           [0]           
                                         
            [nats^#](x1) = [0]           
                           [0]           
                                         
                   [c_5] = [0]           
                           [0]           
                                         
             [zprimes^#] = [0]           
                           [0]           
                                         
               [c_6](x1) = [1 0] x1 + [0]
                           [0 1]      [0]

The order satisfies the following ordering constraints:

                     [nats(N)] =  [2]                            
                                  [0]                            
                               >  [0]                            
                                  [0]                            
                               =  [cons(N)]                      
                                                                 
   [filter^#(cons(X), 0(), M)] =  [0]                            
                                  [0]                            
                               >= [0]                            
                                  [0]                            
                               =  [c_1()]                        
                                                                 
  [filter^#(cons(X), s(N), M)] =  [0]                            
                                  [0]                            
                               >= [0]                            
                                  [0]                            
                               =  [c_2()]                        
                                                                 
          [sieve^#(cons(0()))] =  [0]                            
                                  [0]                            
                               >= [0]                            
                                  [0]                            
                               =  [c_3()]                        
                                                                 
         [sieve^#(cons(s(N)))] =  [0]                            
                                  [0]                            
                               >= [0]                            
                                  [0]                            
                               =  [c_4()]                        
                                                                 
                   [nats^#(N)] =  [0]                            
                                  [0]                            
                               >= [0]                            
                                  [0]                            
                               =  [c_5()]                        
                                                                 
                 [zprimes^#()] =  [0]                            
                                  [0]                            
                               ?  [4]                            
                                  [0]                            
                               =  [c_6(sieve^#(nats(s(s(0())))))]
                                                                 

Further, it can be verified that all rules not oriented are covered by the weightgap condition.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs:
  { filter^#(cons(X), 0(), M) -> c_1()
  , filter^#(cons(X), s(N), M) -> c_2()
  , sieve^#(cons(0())) -> c_3()
  , sieve^#(cons(s(N))) -> c_4()
  , nats^#(N) -> c_5()
  , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }
Weak Trs: { nats(N) -> cons(N) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {1,2,3,4,5} by
applications of Pre({1,2,3,4,5}) = {6}. Here rules are labeled as
follows:

  DPs:
    { 1: filter^#(cons(X), 0(), M) -> c_1()
    , 2: filter^#(cons(X), s(N), M) -> c_2()
    , 3: sieve^#(cons(0())) -> c_3()
    , 4: sieve^#(cons(s(N))) -> c_4()
    , 5: nats^#(N) -> c_5()
    , 6: zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Strict DPs: { zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }
Weak DPs:
  { filter^#(cons(X), 0(), M) -> c_1()
  , filter^#(cons(X), s(N), M) -> c_2()
  , sieve^#(cons(0())) -> c_3()
  , sieve^#(cons(s(N))) -> c_4()
  , nats^#(N) -> c_5() }
Weak Trs: { nats(N) -> cons(N) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

We estimate the number of application of {1} by applications of
Pre({1}) = {}. Here rules are labeled as follows:

  DPs:
    { 1: zprimes^#() -> c_6(sieve^#(nats(s(s(0())))))
    , 2: filter^#(cons(X), 0(), M) -> c_1()
    , 3: filter^#(cons(X), s(N), M) -> c_2()
    , 4: sieve^#(cons(0())) -> c_3()
    , 5: sieve^#(cons(s(N))) -> c_4()
    , 6: nats^#(N) -> c_5() }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak DPs:
  { filter^#(cons(X), 0(), M) -> c_1()
  , filter^#(cons(X), s(N), M) -> c_2()
  , sieve^#(cons(0())) -> c_3()
  , sieve^#(cons(s(N))) -> c_4()
  , nats^#(N) -> c_5()
  , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }
Weak Trs: { nats(N) -> cons(N) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

The following weak DPs constitute a sub-graph of the DG that is
closed under successors. The DPs are removed.

{ filter^#(cons(X), 0(), M) -> c_1()
, filter^#(cons(X), s(N), M) -> c_2()
, sieve^#(cons(0())) -> c_3()
, sieve^#(cons(s(N))) -> c_4()
, nats^#(N) -> c_5()
, zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) }

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Weak Trs: { nats(N) -> cons(N) }
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

No rule is usable, rules are removed from the input problem.

We are left with following problem, upon which TcT provides the
certificate YES(O(1),O(1)).

Rules: Empty
Obligation:
  innermost runtime complexity
Answer:
  YES(O(1),O(1))

Empty rules are trivially bounded

Hurray, we answered YES(O(1),O(1))