We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict Trs: { filter(cons(X), 0(), M) -> cons(0()) , filter(cons(X), s(N), M) -> cons(X) , sieve(cons(0())) -> cons(0()) , sieve(cons(s(N))) -> cons(s(N)) , nats(N) -> cons(N) , zprimes() -> sieve(nats(s(s(0())))) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The input is overlay and right-linear. Switching to innermost rewriting. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict Trs: { filter(cons(X), 0(), M) -> cons(0()) , filter(cons(X), s(N), M) -> cons(X) , sieve(cons(0())) -> cons(0()) , sieve(cons(s(N))) -> cons(s(N)) , nats(N) -> cons(N) , zprimes() -> sieve(nats(s(s(0())))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We add the following weak dependency pairs: Strict DPs: { filter^#(cons(X), 0(), M) -> c_1() , filter^#(cons(X), s(N), M) -> c_2() , sieve^#(cons(0())) -> c_3() , sieve^#(cons(s(N))) -> c_4() , nats^#(N) -> c_5() , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { filter^#(cons(X), 0(), M) -> c_1() , filter^#(cons(X), s(N), M) -> c_2() , sieve^#(cons(0())) -> c_3() , sieve^#(cons(s(N))) -> c_4() , nats^#(N) -> c_5() , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } Strict Trs: { filter(cons(X), 0(), M) -> cons(0()) , filter(cons(X), s(N), M) -> cons(X) , sieve(cons(0())) -> cons(0()) , sieve(cons(s(N))) -> cons(s(N)) , nats(N) -> cons(N) , zprimes() -> sieve(nats(s(s(0())))) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We replace rewrite rules by usable rules: Strict Usable Rules: { nats(N) -> cons(N) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { filter^#(cons(X), 0(), M) -> c_1() , filter^#(cons(X), s(N), M) -> c_2() , sieve^#(cons(0())) -> c_3() , sieve^#(cons(s(N))) -> c_4() , nats^#(N) -> c_5() , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } Strict Trs: { nats(N) -> cons(N) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(sieve^#) = {1}, Uargs(c_6) = {1} TcT has computed the following constructor-restricted matrix interpretation. [cons](x1) = [0] [0] [0] = [0] [0] [s](x1) = [0] [0] [nats](x1) = [2] [0] [filter^#](x1, x2, x3) = [0] [0] [c_1] = [0] [0] [c_2] = [0] [0] [sieve^#](x1) = [2 0] x1 + [0] [0 0] [0] [c_3] = [0] [0] [c_4] = [0] [0] [nats^#](x1) = [0] [0] [c_5] = [0] [0] [zprimes^#] = [0] [0] [c_6](x1) = [1 0] x1 + [0] [0 1] [0] The order satisfies the following ordering constraints: [nats(N)] = [2] [0] > [0] [0] = [cons(N)] [filter^#(cons(X), 0(), M)] = [0] [0] >= [0] [0] = [c_1()] [filter^#(cons(X), s(N), M)] = [0] [0] >= [0] [0] = [c_2()] [sieve^#(cons(0()))] = [0] [0] >= [0] [0] = [c_3()] [sieve^#(cons(s(N)))] = [0] [0] >= [0] [0] = [c_4()] [nats^#(N)] = [0] [0] >= [0] [0] = [c_5()] [zprimes^#()] = [0] [0] ? [4] [0] = [c_6(sieve^#(nats(s(s(0())))))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { filter^#(cons(X), 0(), M) -> c_1() , filter^#(cons(X), s(N), M) -> c_2() , sieve^#(cons(0())) -> c_3() , sieve^#(cons(s(N))) -> c_4() , nats^#(N) -> c_5() , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } Weak Trs: { nats(N) -> cons(N) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1,2,3,4,5} by applications of Pre({1,2,3,4,5}) = {6}. Here rules are labeled as follows: DPs: { 1: filter^#(cons(X), 0(), M) -> c_1() , 2: filter^#(cons(X), s(N), M) -> c_2() , 3: sieve^#(cons(0())) -> c_3() , 4: sieve^#(cons(s(N))) -> c_4() , 5: nats^#(N) -> c_5() , 6: zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } Weak DPs: { filter^#(cons(X), 0(), M) -> c_1() , filter^#(cons(X), s(N), M) -> c_2() , sieve^#(cons(0())) -> c_3() , sieve^#(cons(s(N))) -> c_4() , nats^#(N) -> c_5() } Weak Trs: { nats(N) -> cons(N) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) We estimate the number of application of {1} by applications of Pre({1}) = {}. Here rules are labeled as follows: DPs: { 1: zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) , 2: filter^#(cons(X), 0(), M) -> c_1() , 3: filter^#(cons(X), s(N), M) -> c_2() , 4: sieve^#(cons(0())) -> c_3() , 5: sieve^#(cons(s(N))) -> c_4() , 6: nats^#(N) -> c_5() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { filter^#(cons(X), 0(), M) -> c_1() , filter^#(cons(X), s(N), M) -> c_2() , sieve^#(cons(0())) -> c_3() , sieve^#(cons(s(N))) -> c_4() , nats^#(N) -> c_5() , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } Weak Trs: { nats(N) -> cons(N) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { filter^#(cons(X), 0(), M) -> c_1() , filter^#(cons(X), s(N), M) -> c_2() , sieve^#(cons(0())) -> c_3() , sieve^#(cons(s(N))) -> c_4() , nats^#(N) -> c_5() , zprimes^#() -> c_6(sieve^#(nats(s(s(0()))))) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak Trs: { nats(N) -> cons(N) } Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: innermost runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(1))