(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
first(0, X) → nil
first(s(X), cons(Y, Z)) → cons(Y, n__first(X, activate(Z)))
from(X) → cons(X, n__from(s(X)))
first(X1, X2) → n__first(X1, X2)
from(X) → n__from(X)
activate(n__first(X1, X2)) → first(X1, X2)
activate(n__from(X)) → from(X)
activate(X) → X
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
activate(n__first(s(X10682_3), cons(Y10683_3, Z10684_3))) →+ cons(Y10683_3, n__first(X10682_3, activate(Z10684_3)))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1,1].
The pumping substitution is [Z10684_3 / n__first(s(X10682_3), cons(Y10683_3, Z10684_3))].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)