We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { active(c()) -> mark(f(g(c()))) , active(f(g(X))) -> mark(g(X)) , f(ok(X)) -> ok(f(X)) , g(ok(X)) -> ok(g(X)) , proper(c()) -> ok(c()) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 6. The enriched problem is compatible with the following automaton. { active_0(2) -> 1 , active_0(3) -> 1 , active_0(7) -> 1 , active_1(2) -> 14 , active_1(3) -> 14 , active_1(7) -> 14 , active_2(11) -> 15 , active_3(26) -> 21 , active_4(29) -> 30 , active_5(27) -> 33 , active_6(36) -> 37 , c_0() -> 2 , c_1() -> 11 , c_2() -> 18 , c_3() -> 25 , c_4() -> 35 , mark_0(2) -> 3 , mark_0(3) -> 3 , mark_0(7) -> 3 , mark_1(9) -> 1 , mark_1(9) -> 14 , mark_2(16) -> 15 , mark_4(28) -> 21 , mark_5(31) -> 30 , f_0(2) -> 4 , f_0(3) -> 4 , f_0(7) -> 4 , f_1(2) -> 12 , f_1(3) -> 12 , f_1(7) -> 12 , f_1(10) -> 9 , f_2(17) -> 16 , f_2(19) -> 15 , f_3(22) -> 21 , f_3(24) -> 26 , f_4(27) -> 29 , g_0(2) -> 5 , g_0(3) -> 5 , g_0(7) -> 5 , g_1(2) -> 13 , g_1(3) -> 13 , g_1(7) -> 13 , g_1(11) -> 10 , g_2(18) -> 17 , g_2(20) -> 19 , g_3(18) -> 24 , g_3(23) -> 22 , g_4(18) -> 28 , g_4(25) -> 27 , g_5(25) -> 31 , g_5(32) -> 30 , g_5(35) -> 36 , g_6(34) -> 33 , proper_0(2) -> 6 , proper_0(3) -> 6 , proper_0(7) -> 6 , proper_1(2) -> 14 , proper_1(3) -> 14 , proper_1(7) -> 14 , proper_2(9) -> 15 , proper_2(10) -> 19 , proper_2(11) -> 20 , proper_3(16) -> 21 , proper_3(17) -> 22 , proper_3(18) -> 23 , proper_4(28) -> 30 , proper_5(18) -> 32 , proper_5(31) -> 33 , proper_6(25) -> 34 , ok_0(2) -> 7 , ok_0(3) -> 7 , ok_0(7) -> 7 , ok_1(11) -> 6 , ok_1(11) -> 14 , ok_1(12) -> 4 , ok_1(12) -> 12 , ok_1(13) -> 5 , ok_1(13) -> 13 , ok_2(18) -> 20 , ok_3(24) -> 19 , ok_3(25) -> 23 , ok_3(25) -> 32 , ok_3(26) -> 15 , ok_4(27) -> 22 , ok_4(27) -> 30 , ok_4(29) -> 21 , ok_4(35) -> 34 , ok_5(36) -> 33 , top_0(2) -> 8 , top_0(3) -> 8 , top_0(7) -> 8 , top_1(14) -> 8 , top_2(15) -> 8 , top_3(21) -> 8 , top_4(30) -> 8 , top_5(33) -> 8 , top_6(37) -> 8 } Hurray, we answered YES(?,O(n^1))