*** 1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
        2nd(cons1(X,cons(Y,Z))) -> Y
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1} / {cons/2,cons1/2,n__from/1,s/1}
      Obligation:
        Full
        basic terms: {2nd,activate,from}/{cons,cons1,n__from,s}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak dependency pairs:
      
      Strict DPs
        2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
        2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
        activate#(X) -> c_3(X)
        activate#(n__from(X)) -> c_4(from#(X))
        from#(X) -> c_5(X,X)
        from#(X) -> c_6(X)
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
        2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
        activate#(X) -> c_3(X)
        activate#(n__from(X)) -> c_4(from#(X))
        from#(X) -> c_5(X,X)
        from#(X) -> c_6(X)
      Strict TRS Rules:
        2nd(cons(X,X1)) -> 2nd(cons1(X,activate(X1)))
        2nd(cons1(X,cons(Y,Z))) -> Y
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
      Obligation:
        Full
        basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
        2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
        activate#(X) -> c_3(X)
        activate#(n__from(X)) -> c_4(from#(X))
        from#(X) -> c_5(X,X)
        from#(X) -> c_6(X)
*** 1.1.1 Progress [(?,O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
        2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
        activate#(X) -> c_3(X)
        activate#(n__from(X)) -> c_4(from#(X))
        from#(X) -> c_5(X,X)
        from#(X) -> c_6(X)
      Strict TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
      Obligation:
        Full
        basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 1, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnTrs}
    Proof:
      The weightgap principle applies using the following constant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(cons1) = {2},
          uargs(2nd#) = {1},
          uargs(c_1) = {1},
          uargs(c_4) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                p(2nd) = [0]          
           p(activate) = [1] x1 + [15]
               p(cons) = [1] x2 + [5] 
              p(cons1) = [1] x2 + [0] 
               p(from) = [1] x1 + [6] 
            p(n__from) = [1] x1 + [0] 
                  p(s) = [1] x1 + [0] 
               p(2nd#) = [1] x1 + [0] 
          p(activate#) = [0]          
              p(from#) = [0]          
                p(c_1) = [1] x1 + [0] 
                p(c_2) = [0]          
                p(c_3) = [0]          
                p(c_4) = [1] x1 + [0] 
                p(c_5) = [0]          
                p(c_6) = [0]          
        
        Following rules are strictly oriented:
        2nd#(cons1(X,cons(Y,Z))) = [1] Z + [5]          
                                 > [0]                  
                                 = c_2(Y)               
        
                     activate(X) = [1] X + [15]         
                                 > [1] X + [0]          
                                 = X                    
        
            activate(n__from(X)) = [1] X + [15]         
                                 > [1] X + [6]          
                                 = from(X)              
        
                         from(X) = [1] X + [6]          
                                 > [1] X + [5]          
                                 = cons(X,n__from(s(X)))
        
                         from(X) = [1] X + [6]          
                                 > [1] X + [0]          
                                 = n__from(X)           
        
        
        Following rules are (at-least) weakly oriented:
             2nd#(cons(X,X1)) =  [1] X1 + [5]                    
                              >= [1] X1 + [15]                   
                              =  c_1(2nd#(cons1(X,activate(X1))))
        
                 activate#(X) =  [0]                             
                              >= [0]                             
                              =  c_3(X)                          
        
        activate#(n__from(X)) =  [0]                             
                              >= [0]                             
                              =  c_4(from#(X))                   
        
                     from#(X) =  [0]                             
                              >= [0]                             
                              =  c_5(X,X)                        
        
                     from#(X) =  [0]                             
                              >= [0]                             
                              =  c_6(X)                          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(?,O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
        activate#(X) -> c_3(X)
        activate#(n__from(X)) -> c_4(from#(X))
        from#(X) -> c_5(X,X)
        from#(X) -> c_6(X)
      Strict TRS Rules:
        
      Weak DP Rules:
        2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
      Weak TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Signature:
        {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
      Obligation:
        Full
        basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
    Applied Processor:
      PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
    Proof:
      We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
        1: 2nd#(cons(X,X1)) ->               
             c_1(2nd#(cons1(X,activate(X1))))
        2: activate#(X) -> c_3(X)            
        3: activate#(n__from(X)) ->          
             c_4(from#(X))                   
        5: from#(X) -> c_6(X)                
        
      The strictly oriented rules are moved into the weak component.
  *** 1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
          activate#(X) -> c_3(X)
          activate#(n__from(X)) -> c_4(from#(X))
          from#(X) -> c_5(X,X)
          from#(X) -> c_6(X)
        Strict TRS Rules:
          
        Weak DP Rules:
          2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
        Signature:
          {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
        Obligation:
          Full
          basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
      Applied Processor:
        NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
      Proof:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(c_1) = {1},
          uargs(c_4) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                p(2nd) = [8]         
           p(activate) = [4] x1 + [1]
               p(cons) = [4]         
              p(cons1) = [0]         
               p(from) = [4]         
            p(n__from) = [4]         
                  p(s) = [1]         
               p(2nd#) = [4] x1 + [0]
          p(activate#) = [9]         
              p(from#) = [3]         
                p(c_1) = [4] x1 + [8]
                p(c_2) = [0]         
                p(c_3) = [5]         
                p(c_4) = [1] x1 + [3]
                p(c_5) = [3]         
                p(c_6) = [0]         
        
        Following rules are strictly oriented:
             2nd#(cons(X,X1)) = [16]                            
                              > [8]                             
                              = c_1(2nd#(cons1(X,activate(X1))))
        
                 activate#(X) = [9]                             
                              > [5]                             
                              = c_3(X)                          
        
        activate#(n__from(X)) = [9]                             
                              > [6]                             
                              = c_4(from#(X))                   
        
                     from#(X) = [3]                             
                              > [0]                             
                              = c_6(X)                          
        
        
        Following rules are (at-least) weakly oriented:
        2nd#(cons1(X,cons(Y,Z))) =  [0]                  
                                 >= [0]                  
                                 =  c_2(Y)               
        
                        from#(X) =  [3]                  
                                 >= [3]                  
                                 =  c_5(X,X)             
        
                     activate(X) =  [4] X + [1]          
                                 >= [1] X + [0]          
                                 =  X                    
        
            activate(n__from(X)) =  [17]                 
                                 >= [4]                  
                                 =  from(X)              
        
                         from(X) =  [4]                  
                                 >= [4]                  
                                 =  cons(X,n__from(s(X)))
        
                         from(X) =  [4]                  
                                 >= [4]                  
                                 =  n__from(X)           
        
  *** 1.1.1.1.1.1 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          from#(X) -> c_5(X,X)
        Strict TRS Rules:
          
        Weak DP Rules:
          2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
          2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
          activate#(X) -> c_3(X)
          activate#(n__from(X)) -> c_4(from#(X))
          from#(X) -> c_6(X)
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
        Signature:
          {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
        Obligation:
          Full
          basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
      Applied Processor:
        Assumption
      Proof:
        ()
  
  *** 1.1.1.1.2 Progress [(?,O(1))]  ***
      Considered Problem:
        Strict DP Rules:
          from#(X) -> c_5(X,X)
        Strict TRS Rules:
          
        Weak DP Rules:
          2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
          2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
          activate#(X) -> c_3(X)
          activate#(n__from(X)) -> c_4(from#(X))
          from#(X) -> c_6(X)
        Weak TRS Rules:
          activate(X) -> X
          activate(n__from(X)) -> from(X)
          from(X) -> cons(X,n__from(s(X)))
          from(X) -> n__from(X)
        Signature:
          {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
        Obligation:
          Full
          basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: from#(X) -> c_5(X,X)
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.2.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            from#(X) -> c_5(X,X)
          Strict TRS Rules:
            
          Weak DP Rules:
            2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
            2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
            activate#(X) -> c_3(X)
            activate#(n__from(X)) -> c_4(from#(X))
            from#(X) -> c_6(X)
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
          Obligation:
            Full
            basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
          The following argument positions are considered usable:
            uargs(c_1) = {1},
            uargs(c_4) = {1}
          
          Following symbols are considered usable:
            {}
          TcT has computed the following interpretation:
                  p(2nd) = [8] x1 + [8]
             p(activate) = [1] x1 + [8]
                 p(cons) = [10]        
                p(cons1) = [0]         
                 p(from) = [12]        
              p(n__from) = [9]         
                    p(s) = [0]         
                 p(2nd#) = [2] x1 + [1]
            p(activate#) = [1] x1 + [0]
                p(from#) = [9]         
                  p(c_1) = [8] x1 + [0]
                  p(c_2) = [1]         
                  p(c_3) = [1] x1 + [0]
                  p(c_4) = [1] x1 + [0]
                  p(c_5) = [5]         
                  p(c_6) = [9]         
          
          Following rules are strictly oriented:
          from#(X) = [9]     
                   > [5]     
                   = c_5(X,X)
          
          
          Following rules are (at-least) weakly oriented:
                  2nd#(cons(X,X1)) =  [21]                            
                                   >= [8]                             
                                   =  c_1(2nd#(cons1(X,activate(X1))))
          
          2nd#(cons1(X,cons(Y,Z))) =  [1]                             
                                   >= [1]                             
                                   =  c_2(Y)                          
          
                      activate#(X) =  [1] X + [0]                     
                                   >= [1] X + [0]                     
                                   =  c_3(X)                          
          
             activate#(n__from(X)) =  [9]                             
                                   >= [9]                             
                                   =  c_4(from#(X))                   
          
                          from#(X) =  [9]                             
                                   >= [9]                             
                                   =  c_6(X)                          
          
                       activate(X) =  [1] X + [8]                     
                                   >= [1] X + [0]                     
                                   =  X                               
          
              activate(n__from(X)) =  [17]                            
                                   >= [12]                            
                                   =  from(X)                         
          
                           from(X) =  [12]                            
                                   >= [10]                            
                                   =  cons(X,n__from(s(X)))           
          
                           from(X) =  [12]                            
                                   >= [9]                             
                                   =  n__from(X)                      
          
    *** 1.1.1.1.2.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
            2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
            activate#(X) -> c_3(X)
            activate#(n__from(X)) -> c_4(from#(X))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
          Obligation:
            Full
            basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.2.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
            2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
            activate#(X) -> c_3(X)
            activate#(n__from(X)) -> c_4(from#(X))
            from#(X) -> c_5(X,X)
            from#(X) -> c_6(X)
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
          Obligation:
            Full
            basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1))))
               -->_1 2nd#(cons1(X,cons(Y,Z))) -> c_2(Y):2
            
            2:W:2nd#(cons1(X,cons(Y,Z))) -> c_2(Y)
               -->_1 from#(X) -> c_6(X):6
               -->_1 from#(X) -> c_5(X,X):5
               -->_1 activate#(n__from(X)) -> c_4(from#(X)):4
               -->_1 activate#(X) -> c_3(X):3
               -->_1 2nd#(cons1(X,cons(Y,Z))) -> c_2(Y):2
               -->_1 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1)))):1
            
            3:W:activate#(X) -> c_3(X)
               -->_1 from#(X) -> c_6(X):6
               -->_1 from#(X) -> c_5(X,X):5
               -->_1 activate#(n__from(X)) -> c_4(from#(X)):4
               -->_1 activate#(X) -> c_3(X):3
               -->_1 2nd#(cons1(X,cons(Y,Z))) -> c_2(Y):2
               -->_1 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1)))):1
            
            4:W:activate#(n__from(X)) -> c_4(from#(X))
               -->_1 from#(X) -> c_6(X):6
               -->_1 from#(X) -> c_5(X,X):5
            
            5:W:from#(X) -> c_5(X,X)
               -->_2 from#(X) -> c_6(X):6
               -->_1 from#(X) -> c_6(X):6
               -->_2 from#(X) -> c_5(X,X):5
               -->_1 from#(X) -> c_5(X,X):5
               -->_2 activate#(n__from(X)) -> c_4(from#(X)):4
               -->_1 activate#(n__from(X)) -> c_4(from#(X)):4
               -->_2 activate#(X) -> c_3(X):3
               -->_1 activate#(X) -> c_3(X):3
               -->_2 2nd#(cons1(X,cons(Y,Z))) -> c_2(Y):2
               -->_1 2nd#(cons1(X,cons(Y,Z))) -> c_2(Y):2
               -->_2 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1)))):1
               -->_1 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1)))):1
            
            6:W:from#(X) -> c_6(X)
               -->_1 from#(X) -> c_6(X):6
               -->_1 from#(X) -> c_5(X,X):5
               -->_1 activate#(n__from(X)) -> c_4(from#(X)):4
               -->_1 activate#(X) -> c_3(X):3
               -->_1 2nd#(cons1(X,cons(Y,Z))) -> c_2(Y):2
               -->_1 2nd#(cons(X,X1)) -> c_1(2nd#(cons1(X,activate(X1)))):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: 2nd#(cons(X,X1)) ->               
                 c_1(2nd#(cons1(X,activate(X1))))
            6: from#(X) -> c_6(X)                
            5: from#(X) -> c_5(X,X)              
            4: activate#(n__from(X)) ->          
                 c_4(from#(X))                   
            3: activate#(X) -> c_3(X)            
            2: 2nd#(cons1(X,cons(Y,Z))) ->       
                 c_2(Y)                          
    *** 1.1.1.1.2.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            activate(X) -> X
            activate(n__from(X)) -> from(X)
            from(X) -> cons(X,n__from(s(X)))
            from(X) -> n__from(X)
          Signature:
            {2nd/1,activate/1,from/1,2nd#/1,activate#/1,from#/1} / {cons/2,cons1/2,n__from/1,s/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/2,c_6/1}
          Obligation:
            Full
            basic terms: {2nd#,activate#,from#}/{cons,cons1,n__from,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).