*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1} Obligation: Full basic terms: {activate,c,d,f,h}/{g,n__d,n__f} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following weak dependency pairs: Strict DPs activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Weak DPs and mark the set of starting terms. *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Strict TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) h(X) -> c(n__d(X)) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) *** 1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Strict TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) Weak DP Rules: Weak TRS Rules: Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(d) = {1}, uargs(n__d) = {1}, uargs(d#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(activate) = [3] x1 + [0] p(c) = [3] x1 + [0] p(d) = [1] x1 + [0] p(f) = [0] p(g) = [1] x1 + [0] p(h) = [0] p(n__d) = [1] x1 + [0] p(n__f) = [0] p(activate#) = [3] x1 + [0] p(c#) = [3] x1 + [0] p(d#) = [1] x1 + [0] p(f#) = [0] p(h#) = [3] x1 + [1] p(c_1) = [3] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [0] Following rules are strictly oriented: h#(X) = [3] X + [1] > [3] X + [0] = c_8(c#(n__d(X))) Following rules are (at-least) weakly oriented: activate#(X) = [3] X + [0] >= [3] X + [0] = c_1(X) activate#(n__d(X)) = [3] X + [0] >= [1] X + [0] = c_2(d#(X)) activate#(n__f(X)) = [0] >= [0] = c_3(f#(X)) c#(X) = [3] X + [0] >= [3] X + [0] = c_4(d#(activate(X))) d#(X) = [1] X + [0] >= [1] X + [0] = c_5(X) f#(X) = [0] >= [0] = c_6(X) f#(f(X)) = [0] >= [0] = c_7(c#(n__f(g(n__f(X))))) activate(X) = [3] X + [0] >= [1] X + [0] = X activate(n__d(X)) = [3] X + [0] >= [1] X + [0] = d(X) activate(n__f(X)) = [0] >= [0] = f(X) c(X) = [3] X + [0] >= [3] X + [0] = d(activate(X)) d(X) = [1] X + [0] >= [1] X + [0] = n__d(X) f(X) = [0] >= [0] = n__f(X) f(f(X)) = [0] >= [0] = c(n__f(g(n__f(X)))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) Strict TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) Weak DP Rules: h#(X) -> c_8(c#(n__d(X))) Weak TRS Rules: Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(d) = {1}, uargs(n__d) = {1}, uargs(d#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(activate) = [3] x1 + [0] p(c) = [3] x1 + [0] p(d) = [1] x1 + [0] p(f) = [0] p(g) = [1] x1 + [3] p(h) = [0] p(n__d) = [1] x1 + [0] p(n__f) = [2] p(activate#) = [3] x1 + [0] p(c#) = [3] x1 + [0] p(d#) = [1] x1 + [0] p(f#) = [7] p(h#) = [3] x1 + [0] p(c_1) = [3] x1 + [0] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [0] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [0] Following rules are strictly oriented: f#(X) = [7] > [0] = c_6(X) f#(f(X)) = [7] > [6] = c_7(c#(n__f(g(n__f(X))))) activate(n__f(X)) = [6] > [0] = f(X) Following rules are (at-least) weakly oriented: activate#(X) = [3] X + [0] >= [3] X + [0] = c_1(X) activate#(n__d(X)) = [3] X + [0] >= [1] X + [0] = c_2(d#(X)) activate#(n__f(X)) = [6] >= [7] = c_3(f#(X)) c#(X) = [3] X + [0] >= [3] X + [0] = c_4(d#(activate(X))) d#(X) = [1] X + [0] >= [1] X + [0] = c_5(X) h#(X) = [3] X + [0] >= [3] X + [0] = c_8(c#(n__d(X))) activate(X) = [3] X + [0] >= [1] X + [0] = X activate(n__d(X)) = [3] X + [0] >= [1] X + [0] = d(X) c(X) = [3] X + [0] >= [3] X + [0] = d(activate(X)) d(X) = [1] X + [0] >= [1] X + [0] = n__d(X) f(X) = [0] >= [2] = n__f(X) f(f(X)) = [0] >= [6] = c(n__f(g(n__f(X)))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) Strict TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) Weak DP Rules: f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Weak TRS Rules: activate(n__f(X)) -> f(X) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(d) = {1}, uargs(n__d) = {1}, uargs(d#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(activate) = [1] x1 + [2] p(c) = [8] x1 + [4] p(d) = [1] x1 + [14] p(f) = [1] p(g) = [0] p(h) = [1] p(n__d) = [1] x1 + [0] p(n__f) = [1] p(activate#) = [4] x1 + [0] p(c#) = [8] x1 + [3] p(d#) = [1] x1 + [0] p(f#) = [13] p(h#) = [8] x1 + [12] p(c_1) = [8] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [8] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [4] p(c_6) = [13] p(c_7) = [1] x1 + [2] p(c_8) = [1] x1 + [7] Following rules are strictly oriented: c#(X) = [8] X + [3] > [1] X + [2] = c_4(d#(activate(X))) activate(X) = [1] X + [2] > [1] X + [0] = X d(X) = [1] X + [14] > [1] X + [0] = n__d(X) Following rules are (at-least) weakly oriented: activate#(X) = [4] X + [0] >= [8] = c_1(X) activate#(n__d(X)) = [4] X + [0] >= [1] X + [0] = c_2(d#(X)) activate#(n__f(X)) = [4] >= [21] = c_3(f#(X)) d#(X) = [1] X + [0] >= [1] X + [4] = c_5(X) f#(X) = [13] >= [13] = c_6(X) f#(f(X)) = [13] >= [13] = c_7(c#(n__f(g(n__f(X))))) h#(X) = [8] X + [12] >= [8] X + [10] = c_8(c#(n__d(X))) activate(n__d(X)) = [1] X + [2] >= [1] X + [14] = d(X) activate(n__f(X)) = [3] >= [1] = f(X) c(X) = [8] X + [4] >= [1] X + [16] = d(activate(X)) f(X) = [1] >= [1] = n__f(X) f(f(X)) = [1] >= [12] = c(n__f(g(n__f(X)))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) d#(X) -> c_5(X) Strict TRS Rules: activate(n__d(X)) -> d(X) c(X) -> d(activate(X)) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) Weak DP Rules: c#(X) -> c_4(d#(activate(X))) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Weak TRS Rules: activate(X) -> X activate(n__f(X)) -> f(X) d(X) -> n__d(X) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(d) = {1}, uargs(n__d) = {1}, uargs(d#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(activate) = [2] x1 + [3] p(c) = [2] x1 + [0] p(d) = [1] x1 + [1] p(f) = [1] x1 + [2] p(g) = [0] p(h) = [1] x1 + [0] p(n__d) = [1] x1 + [0] p(n__f) = [1] x1 + [1] p(activate#) = [10] x1 + [12] p(c#) = [3] x1 + [6] p(d#) = [1] x1 + [0] p(f#) = [8] x1 + [12] p(h#) = [3] x1 + [6] p(c_1) = [1] p(c_2) = [1] x1 + [0] p(c_3) = [1] x1 + [7] p(c_4) = [1] x1 + [3] p(c_5) = [1] x1 + [2] p(c_6) = [8] x1 + [1] p(c_7) = [1] x1 + [15] p(c_8) = [1] x1 + [0] Following rules are strictly oriented: activate#(X) = [10] X + [12] > [1] = c_1(X) activate#(n__d(X)) = [10] X + [12] > [1] X + [0] = c_2(d#(X)) activate#(n__f(X)) = [10] X + [22] > [8] X + [19] = c_3(f#(X)) activate(n__d(X)) = [2] X + [3] > [1] X + [1] = d(X) f(X) = [1] X + [2] > [1] X + [1] = n__f(X) f(f(X)) = [1] X + [4] > [2] = c(n__f(g(n__f(X)))) Following rules are (at-least) weakly oriented: c#(X) = [3] X + [6] >= [2] X + [6] = c_4(d#(activate(X))) d#(X) = [1] X + [0] >= [1] X + [2] = c_5(X) f#(X) = [8] X + [12] >= [8] X + [1] = c_6(X) f#(f(X)) = [8] X + [28] >= [24] = c_7(c#(n__f(g(n__f(X))))) h#(X) = [3] X + [6] >= [3] X + [6] = c_8(c#(n__d(X))) activate(X) = [2] X + [3] >= [1] X + [0] = X activate(n__f(X)) = [2] X + [5] >= [1] X + [2] = f(X) c(X) = [2] X + [0] >= [2] X + [4] = d(activate(X)) d(X) = [1] X + [1] >= [1] X + [0] = n__d(X) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: d#(X) -> c_5(X) Strict TRS Rules: c(X) -> d(activate(X)) Weak DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Weak TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(d) = {1}, uargs(n__d) = {1}, uargs(d#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(activate) = [4] x1 + [4] p(c) = [4] x1 + [1] p(d) = [1] x1 + [1] p(f) = [4] p(g) = [1] x1 + [2] p(h) = [1] x1 + [0] p(n__d) = [1] x1 + [0] p(n__f) = [0] p(activate#) = [1] x1 + [6] p(c#) = [4] x1 + [6] p(d#) = [1] x1 + [2] p(f#) = [6] p(h#) = [4] x1 + [7] p(c_1) = [1] x1 + [1] p(c_2) = [1] x1 + [4] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [1] p(c_6) = [1] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] Following rules are strictly oriented: d#(X) = [1] X + [2] > [1] X + [1] = c_5(X) Following rules are (at-least) weakly oriented: activate#(X) = [1] X + [6] >= [1] X + [1] = c_1(X) activate#(n__d(X)) = [1] X + [6] >= [1] X + [6] = c_2(d#(X)) activate#(n__f(X)) = [6] >= [6] = c_3(f#(X)) c#(X) = [4] X + [6] >= [4] X + [6] = c_4(d#(activate(X))) f#(X) = [6] >= [1] = c_6(X) f#(f(X)) = [6] >= [6] = c_7(c#(n__f(g(n__f(X))))) h#(X) = [4] X + [7] >= [4] X + [7] = c_8(c#(n__d(X))) activate(X) = [4] X + [4] >= [1] X + [0] = X activate(n__d(X)) = [4] X + [4] >= [1] X + [1] = d(X) activate(n__f(X)) = [4] >= [4] = f(X) c(X) = [4] X + [1] >= [4] X + [5] = d(activate(X)) d(X) = [1] X + [1] >= [1] X + [0] = n__d(X) f(X) = [4] >= [0] = n__f(X) f(f(X)) = [4] >= [1] = c(n__f(g(n__f(X)))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: c(X) -> d(activate(X)) Weak DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Weak TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny} Proof: The weightgap principle applies using the following nonconstant growth matrix-interpretation: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(d) = {1}, uargs(n__d) = {1}, uargs(d#) = {1}, uargs(c_2) = {1}, uargs(c_3) = {1}, uargs(c_4) = {1}, uargs(c_5) = {1}, uargs(c_7) = {1}, uargs(c_8) = {1} Following symbols are considered usable: {} TcT has computed the following interpretation: p(activate) = [2] x1 + [0] p(c) = [2] x1 + [1] p(d) = [1] x1 + [0] p(f) = [2] x1 + [2] p(g) = [0] p(h) = [4] x1 + [0] p(n__d) = [1] x1 + [0] p(n__f) = [1] x1 + [1] p(activate#) = [5] x1 + [1] p(c#) = [4] x1 + [2] p(d#) = [1] x1 + [0] p(f#) = [6] p(h#) = [4] x1 + [3] p(c_1) = [1] p(c_2) = [1] x1 + [1] p(c_3) = [1] x1 + [0] p(c_4) = [1] x1 + [0] p(c_5) = [1] x1 + [0] p(c_6) = [6] p(c_7) = [1] x1 + [0] p(c_8) = [1] x1 + [1] Following rules are strictly oriented: c(X) = [2] X + [1] > [2] X + [0] = d(activate(X)) Following rules are (at-least) weakly oriented: activate#(X) = [5] X + [1] >= [1] = c_1(X) activate#(n__d(X)) = [5] X + [1] >= [1] X + [1] = c_2(d#(X)) activate#(n__f(X)) = [5] X + [6] >= [6] = c_3(f#(X)) c#(X) = [4] X + [2] >= [2] X + [0] = c_4(d#(activate(X))) d#(X) = [1] X + [0] >= [1] X + [0] = c_5(X) f#(X) = [6] >= [6] = c_6(X) f#(f(X)) = [6] >= [6] = c_7(c#(n__f(g(n__f(X))))) h#(X) = [4] X + [3] >= [4] X + [3] = c_8(c#(n__d(X))) activate(X) = [2] X + [0] >= [1] X + [0] = X activate(n__d(X)) = [2] X + [0] >= [1] X + [0] = d(X) activate(n__f(X)) = [2] X + [2] >= [2] X + [2] = f(X) d(X) = [1] X + [0] >= [1] X + [0] = n__d(X) f(X) = [2] X + [2] >= [1] X + [1] = n__f(X) f(f(X)) = [4] X + [6] >= [3] = c(n__f(g(n__f(X)))) Further, it can be verified that all rules not oriented are covered by the weightgap condition. *** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: activate#(X) -> c_1(X) activate#(n__d(X)) -> c_2(d#(X)) activate#(n__f(X)) -> c_3(f#(X)) c#(X) -> c_4(d#(activate(X))) d#(X) -> c_5(X) f#(X) -> c_6(X) f#(f(X)) -> c_7(c#(n__f(g(n__f(X))))) h#(X) -> c_8(c#(n__d(X))) Weak TRS Rules: activate(X) -> X activate(n__d(X)) -> d(X) activate(n__f(X)) -> f(X) c(X) -> d(activate(X)) d(X) -> n__d(X) f(X) -> n__f(X) f(f(X)) -> c(n__f(g(n__f(X)))) Signature: {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1} Obligation: Full basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).