*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        c(X) -> d(activate(X))
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
        h(X) -> c(n__d(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,c/1,d/1,f/1,h/1} / {g/1,n__d/1,n__f/1}
      Obligation:
        Full
        basic terms: {activate,c,d,f,h}/{g,n__d,n__f}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following weak dependency pairs:
      
      Strict DPs
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        c(X) -> d(activate(X))
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
        h(X) -> c(n__d(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        c(X) -> d(activate(X))
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        c(X) -> d(activate(X))
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(n__d) = {1},
          uargs(d#) = {1},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
           p(activate) = [3] x1 + [0]
                  p(c) = [3] x1 + [0]
                  p(d) = [1] x1 + [0]
                  p(f) = [0]         
                  p(g) = [1] x1 + [0]
                  p(h) = [0]         
               p(n__d) = [1] x1 + [0]
               p(n__f) = [0]         
          p(activate#) = [3] x1 + [0]
                 p(c#) = [3] x1 + [0]
                 p(d#) = [1] x1 + [0]
                 p(f#) = [0]         
                 p(h#) = [3] x1 + [1]
                p(c_1) = [3] x1 + [0]
                p(c_2) = [1] x1 + [0]
                p(c_3) = [1] x1 + [0]
                p(c_4) = [1] x1 + [0]
                p(c_5) = [1] x1 + [0]
                p(c_6) = [0]         
                p(c_7) = [1] x1 + [0]
                p(c_8) = [1] x1 + [0]
        
        Following rules are strictly oriented:
        h#(X) = [3] X + [1]     
              > [3] X + [0]     
              = c_8(c#(n__d(X)))
        
        
        Following rules are (at-least) weakly oriented:
              activate#(X) =  [3] X + [0]              
                           >= [3] X + [0]              
                           =  c_1(X)                   
        
        activate#(n__d(X)) =  [3] X + [0]              
                           >= [1] X + [0]              
                           =  c_2(d#(X))               
        
        activate#(n__f(X)) =  [0]                      
                           >= [0]                      
                           =  c_3(f#(X))               
        
                     c#(X) =  [3] X + [0]              
                           >= [3] X + [0]              
                           =  c_4(d#(activate(X)))     
        
                     d#(X) =  [1] X + [0]              
                           >= [1] X + [0]              
                           =  c_5(X)                   
        
                     f#(X) =  [0]                      
                           >= [0]                      
                           =  c_6(X)                   
        
                  f#(f(X)) =  [0]                      
                           >= [0]                      
                           =  c_7(c#(n__f(g(n__f(X)))))
        
               activate(X) =  [3] X + [0]              
                           >= [1] X + [0]              
                           =  X                        
        
         activate(n__d(X)) =  [3] X + [0]              
                           >= [1] X + [0]              
                           =  d(X)                     
        
         activate(n__f(X)) =  [0]                      
                           >= [0]                      
                           =  f(X)                     
        
                      c(X) =  [3] X + [0]              
                           >= [3] X + [0]              
                           =  d(activate(X))           
        
                      d(X) =  [1] X + [0]              
                           >= [1] X + [0]              
                           =  n__d(X)                  
        
                      f(X) =  [0]                      
                           >= [0]                      
                           =  n__f(X)                  
        
                   f(f(X)) =  [0]                      
                           >= [0]                      
                           =  c(n__f(g(n__f(X))))      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        c(X) -> d(activate(X))
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
      Weak DP Rules:
        h#(X) -> c_8(c#(n__d(X)))
      Weak TRS Rules:
        
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(n__d) = {1},
          uargs(d#) = {1},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
           p(activate) = [3] x1 + [0]
                  p(c) = [3] x1 + [0]
                  p(d) = [1] x1 + [0]
                  p(f) = [0]         
                  p(g) = [1] x1 + [3]
                  p(h) = [0]         
               p(n__d) = [1] x1 + [0]
               p(n__f) = [2]         
          p(activate#) = [3] x1 + [0]
                 p(c#) = [3] x1 + [0]
                 p(d#) = [1] x1 + [0]
                 p(f#) = [7]         
                 p(h#) = [3] x1 + [0]
                p(c_1) = [3] x1 + [0]
                p(c_2) = [1] x1 + [0]
                p(c_3) = [1] x1 + [0]
                p(c_4) = [1] x1 + [0]
                p(c_5) = [1] x1 + [0]
                p(c_6) = [0]         
                p(c_7) = [1] x1 + [0]
                p(c_8) = [1] x1 + [0]
        
        Following rules are strictly oriented:
                    f#(X) = [7]                      
                          > [0]                      
                          = c_6(X)                   
        
                 f#(f(X)) = [7]                      
                          > [6]                      
                          = c_7(c#(n__f(g(n__f(X)))))
        
        activate(n__f(X)) = [6]                      
                          > [0]                      
                          = f(X)                     
        
        
        Following rules are (at-least) weakly oriented:
              activate#(X) =  [3] X + [0]         
                           >= [3] X + [0]         
                           =  c_1(X)              
        
        activate#(n__d(X)) =  [3] X + [0]         
                           >= [1] X + [0]         
                           =  c_2(d#(X))          
        
        activate#(n__f(X)) =  [6]                 
                           >= [7]                 
                           =  c_3(f#(X))          
        
                     c#(X) =  [3] X + [0]         
                           >= [3] X + [0]         
                           =  c_4(d#(activate(X)))
        
                     d#(X) =  [1] X + [0]         
                           >= [1] X + [0]         
                           =  c_5(X)              
        
                     h#(X) =  [3] X + [0]         
                           >= [3] X + [0]         
                           =  c_8(c#(n__d(X)))    
        
               activate(X) =  [3] X + [0]         
                           >= [1] X + [0]         
                           =  X                   
        
         activate(n__d(X)) =  [3] X + [0]         
                           >= [1] X + [0]         
                           =  d(X)                
        
                      c(X) =  [3] X + [0]         
                           >= [3] X + [0]         
                           =  d(activate(X))      
        
                      d(X) =  [1] X + [0]         
                           >= [1] X + [0]         
                           =  n__d(X)             
        
                      f(X) =  [0]                 
                           >= [2]                 
                           =  n__f(X)             
        
                   f(f(X)) =  [0]                 
                           >= [6]                 
                           =  c(n__f(g(n__f(X)))) 
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
      Strict TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        c(X) -> d(activate(X))
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
      Weak DP Rules:
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Weak TRS Rules:
        activate(n__f(X)) -> f(X)
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(n__d) = {1},
          uargs(d#) = {1},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
           p(activate) = [1] x1 + [2] 
                  p(c) = [8] x1 + [4] 
                  p(d) = [1] x1 + [14]
                  p(f) = [1]          
                  p(g) = [0]          
                  p(h) = [1]          
               p(n__d) = [1] x1 + [0] 
               p(n__f) = [1]          
          p(activate#) = [4] x1 + [0] 
                 p(c#) = [8] x1 + [3] 
                 p(d#) = [1] x1 + [0] 
                 p(f#) = [13]         
                 p(h#) = [8] x1 + [12]
                p(c_1) = [8]          
                p(c_2) = [1] x1 + [0] 
                p(c_3) = [1] x1 + [8] 
                p(c_4) = [1] x1 + [0] 
                p(c_5) = [1] x1 + [4] 
                p(c_6) = [13]         
                p(c_7) = [1] x1 + [2] 
                p(c_8) = [1] x1 + [7] 
        
        Following rules are strictly oriented:
              c#(X) = [8] X + [3]         
                    > [1] X + [2]         
                    = c_4(d#(activate(X)))
        
        activate(X) = [1] X + [2]         
                    > [1] X + [0]         
                    = X                   
        
               d(X) = [1] X + [14]        
                    > [1] X + [0]         
                    = n__d(X)             
        
        
        Following rules are (at-least) weakly oriented:
              activate#(X) =  [4] X + [0]              
                           >= [8]                      
                           =  c_1(X)                   
        
        activate#(n__d(X)) =  [4] X + [0]              
                           >= [1] X + [0]              
                           =  c_2(d#(X))               
        
        activate#(n__f(X)) =  [4]                      
                           >= [21]                     
                           =  c_3(f#(X))               
        
                     d#(X) =  [1] X + [0]              
                           >= [1] X + [4]              
                           =  c_5(X)                   
        
                     f#(X) =  [13]                     
                           >= [13]                     
                           =  c_6(X)                   
        
                  f#(f(X)) =  [13]                     
                           >= [13]                     
                           =  c_7(c#(n__f(g(n__f(X)))))
        
                     h#(X) =  [8] X + [12]             
                           >= [8] X + [10]             
                           =  c_8(c#(n__d(X)))         
        
         activate(n__d(X)) =  [1] X + [2]              
                           >= [1] X + [14]             
                           =  d(X)                     
        
         activate(n__f(X)) =  [3]                      
                           >= [1]                      
                           =  f(X)                     
        
                      c(X) =  [8] X + [4]              
                           >= [1] X + [16]             
                           =  d(activate(X))           
        
                      f(X) =  [1]                      
                           >= [1]                      
                           =  n__f(X)                  
        
                   f(f(X)) =  [1]                      
                           >= [12]                     
                           =  c(n__f(g(n__f(X))))      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        d#(X) -> c_5(X)
      Strict TRS Rules:
        activate(n__d(X)) -> d(X)
        c(X) -> d(activate(X))
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
      Weak DP Rules:
        c#(X) -> c_4(d#(activate(X)))
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__f(X)) -> f(X)
        d(X) -> n__d(X)
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(n__d) = {1},
          uargs(d#) = {1},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
           p(activate) = [2] x1 + [3]  
                  p(c) = [2] x1 + [0]  
                  p(d) = [1] x1 + [1]  
                  p(f) = [1] x1 + [2]  
                  p(g) = [0]           
                  p(h) = [1] x1 + [0]  
               p(n__d) = [1] x1 + [0]  
               p(n__f) = [1] x1 + [1]  
          p(activate#) = [10] x1 + [12]
                 p(c#) = [3] x1 + [6]  
                 p(d#) = [1] x1 + [0]  
                 p(f#) = [8] x1 + [12] 
                 p(h#) = [3] x1 + [6]  
                p(c_1) = [1]           
                p(c_2) = [1] x1 + [0]  
                p(c_3) = [1] x1 + [7]  
                p(c_4) = [1] x1 + [3]  
                p(c_5) = [1] x1 + [2]  
                p(c_6) = [8] x1 + [1]  
                p(c_7) = [1] x1 + [15] 
                p(c_8) = [1] x1 + [0]  
        
        Following rules are strictly oriented:
              activate#(X) = [10] X + [12]      
                           > [1]                
                           = c_1(X)             
        
        activate#(n__d(X)) = [10] X + [12]      
                           > [1] X + [0]        
                           = c_2(d#(X))         
        
        activate#(n__f(X)) = [10] X + [22]      
                           > [8] X + [19]       
                           = c_3(f#(X))         
        
         activate(n__d(X)) = [2] X + [3]        
                           > [1] X + [1]        
                           = d(X)               
        
                      f(X) = [1] X + [2]        
                           > [1] X + [1]        
                           = n__f(X)            
        
                   f(f(X)) = [1] X + [4]        
                           > [2]                
                           = c(n__f(g(n__f(X))))
        
        
        Following rules are (at-least) weakly oriented:
                    c#(X) =  [3] X + [6]              
                          >= [2] X + [6]              
                          =  c_4(d#(activate(X)))     
        
                    d#(X) =  [1] X + [0]              
                          >= [1] X + [2]              
                          =  c_5(X)                   
        
                    f#(X) =  [8] X + [12]             
                          >= [8] X + [1]              
                          =  c_6(X)                   
        
                 f#(f(X)) =  [8] X + [28]             
                          >= [24]                     
                          =  c_7(c#(n__f(g(n__f(X)))))
        
                    h#(X) =  [3] X + [6]              
                          >= [3] X + [6]              
                          =  c_8(c#(n__d(X)))         
        
              activate(X) =  [2] X + [3]              
                          >= [1] X + [0]              
                          =  X                        
        
        activate(n__f(X)) =  [2] X + [5]              
                          >= [1] X + [2]              
                          =  f(X)                     
        
                     c(X) =  [2] X + [0]              
                          >= [2] X + [4]              
                          =  d(activate(X))           
        
                     d(X) =  [1] X + [1]              
                          >= [1] X + [0]              
                          =  n__d(X)                  
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        d#(X) -> c_5(X)
      Strict TRS Rules:
        c(X) -> d(activate(X))
      Weak DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(n__d) = {1},
          uargs(d#) = {1},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
           p(activate) = [4] x1 + [4]
                  p(c) = [4] x1 + [1]
                  p(d) = [1] x1 + [1]
                  p(f) = [4]         
                  p(g) = [1] x1 + [2]
                  p(h) = [1] x1 + [0]
               p(n__d) = [1] x1 + [0]
               p(n__f) = [0]         
          p(activate#) = [1] x1 + [6]
                 p(c#) = [4] x1 + [6]
                 p(d#) = [1] x1 + [2]
                 p(f#) = [6]         
                 p(h#) = [4] x1 + [7]
                p(c_1) = [1] x1 + [1]
                p(c_2) = [1] x1 + [4]
                p(c_3) = [1] x1 + [0]
                p(c_4) = [1] x1 + [0]
                p(c_5) = [1] x1 + [1]
                p(c_6) = [1]         
                p(c_7) = [1] x1 + [0]
                p(c_8) = [1] x1 + [1]
        
        Following rules are strictly oriented:
        d#(X) = [1] X + [2]
              > [1] X + [1]
              = c_5(X)     
        
        
        Following rules are (at-least) weakly oriented:
              activate#(X) =  [1] X + [6]              
                           >= [1] X + [1]              
                           =  c_1(X)                   
        
        activate#(n__d(X)) =  [1] X + [6]              
                           >= [1] X + [6]              
                           =  c_2(d#(X))               
        
        activate#(n__f(X)) =  [6]                      
                           >= [6]                      
                           =  c_3(f#(X))               
        
                     c#(X) =  [4] X + [6]              
                           >= [4] X + [6]              
                           =  c_4(d#(activate(X)))     
        
                     f#(X) =  [6]                      
                           >= [1]                      
                           =  c_6(X)                   
        
                  f#(f(X)) =  [6]                      
                           >= [6]                      
                           =  c_7(c#(n__f(g(n__f(X)))))
        
                     h#(X) =  [4] X + [7]              
                           >= [4] X + [7]              
                           =  c_8(c#(n__d(X)))         
        
               activate(X) =  [4] X + [4]              
                           >= [1] X + [0]              
                           =  X                        
        
         activate(n__d(X)) =  [4] X + [4]              
                           >= [1] X + [1]              
                           =  d(X)                     
        
         activate(n__f(X)) =  [4]                      
                           >= [4]                      
                           =  f(X)                     
        
                      c(X) =  [4] X + [1]              
                           >= [4] X + [5]              
                           =  d(activate(X))           
        
                      d(X) =  [1] X + [1]              
                           >= [1] X + [0]              
                           =  n__d(X)                  
        
                      f(X) =  [4]                      
                           >= [0]                      
                           =  n__f(X)                  
        
                   f(f(X)) =  [4]                      
                           >= [1]                      
                           =  c(n__f(g(n__f(X))))      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        c(X) -> d(activate(X))
      Weak DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(d) = {1},
          uargs(n__d) = {1},
          uargs(d#) = {1},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_4) = {1},
          uargs(c_5) = {1},
          uargs(c_7) = {1},
          uargs(c_8) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
           p(activate) = [2] x1 + [0]
                  p(c) = [2] x1 + [1]
                  p(d) = [1] x1 + [0]
                  p(f) = [2] x1 + [2]
                  p(g) = [0]         
                  p(h) = [4] x1 + [0]
               p(n__d) = [1] x1 + [0]
               p(n__f) = [1] x1 + [1]
          p(activate#) = [5] x1 + [1]
                 p(c#) = [4] x1 + [2]
                 p(d#) = [1] x1 + [0]
                 p(f#) = [6]         
                 p(h#) = [4] x1 + [3]
                p(c_1) = [1]         
                p(c_2) = [1] x1 + [1]
                p(c_3) = [1] x1 + [0]
                p(c_4) = [1] x1 + [0]
                p(c_5) = [1] x1 + [0]
                p(c_6) = [6]         
                p(c_7) = [1] x1 + [0]
                p(c_8) = [1] x1 + [1]
        
        Following rules are strictly oriented:
        c(X) = [2] X + [1]   
             > [2] X + [0]   
             = d(activate(X))
        
        
        Following rules are (at-least) weakly oriented:
              activate#(X) =  [5] X + [1]              
                           >= [1]                      
                           =  c_1(X)                   
        
        activate#(n__d(X)) =  [5] X + [1]              
                           >= [1] X + [1]              
                           =  c_2(d#(X))               
        
        activate#(n__f(X)) =  [5] X + [6]              
                           >= [6]                      
                           =  c_3(f#(X))               
        
                     c#(X) =  [4] X + [2]              
                           >= [2] X + [0]              
                           =  c_4(d#(activate(X)))     
        
                     d#(X) =  [1] X + [0]              
                           >= [1] X + [0]              
                           =  c_5(X)                   
        
                     f#(X) =  [6]                      
                           >= [6]                      
                           =  c_6(X)                   
        
                  f#(f(X)) =  [6]                      
                           >= [6]                      
                           =  c_7(c#(n__f(g(n__f(X)))))
        
                     h#(X) =  [4] X + [3]              
                           >= [4] X + [3]              
                           =  c_8(c#(n__d(X)))         
        
               activate(X) =  [2] X + [0]              
                           >= [1] X + [0]              
                           =  X                        
        
         activate(n__d(X)) =  [2] X + [0]              
                           >= [1] X + [0]              
                           =  d(X)                     
        
         activate(n__f(X)) =  [2] X + [2]              
                           >= [2] X + [2]              
                           =  f(X)                     
        
                      d(X) =  [1] X + [0]              
                           >= [1] X + [0]              
                           =  n__d(X)                  
        
                      f(X) =  [2] X + [2]              
                           >= [1] X + [1]              
                           =  n__f(X)                  
        
                   f(f(X)) =  [4] X + [6]              
                           >= [3]                      
                           =  c(n__f(g(n__f(X))))      
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__d(X)) -> c_2(d#(X))
        activate#(n__f(X)) -> c_3(f#(X))
        c#(X) -> c_4(d#(activate(X)))
        d#(X) -> c_5(X)
        f#(X) -> c_6(X)
        f#(f(X)) -> c_7(c#(n__f(g(n__f(X)))))
        h#(X) -> c_8(c#(n__d(X)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__d(X)) -> d(X)
        activate(n__f(X)) -> f(X)
        c(X) -> d(activate(X))
        d(X) -> n__d(X)
        f(X) -> n__f(X)
        f(f(X)) -> c(n__f(g(n__f(X))))
      Signature:
        {activate/1,c/1,d/1,f/1,h/1,activate#/1,c#/1,d#/1,f#/1,h#/1} / {g/1,n__d/1,n__f/1,c_1/1,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/1}
      Obligation:
        Full
        basic terms: {activate#,c#,d#,f#,h#}/{g,n__d,n__f}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).