We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) We add the following weak dependency pairs: Strict DPs: { active^#(f(X)) -> c_1(f^#(active(X))) , active^#(f(f(X))) -> c_2(c^#(f(g(f(X))))) , active^#(c(X)) -> c_3(d^#(X)) , active^#(h(X)) -> c_4(c^#(d(X))) , active^#(h(X)) -> c_5(h^#(active(X))) , f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) , c^#(ok(X)) -> c_8(c^#(X)) , d^#(ok(X)) -> c_10(d^#(X)) , h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) , g^#(ok(X)) -> c_9(g^#(X)) , proper^#(f(X)) -> c_13(f^#(proper(X))) , proper^#(c(X)) -> c_14(c^#(proper(X))) , proper^#(g(X)) -> c_15(g^#(proper(X))) , proper^#(d(X)) -> c_16(d^#(proper(X))) , proper^#(h(X)) -> c_17(h^#(proper(X))) , top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { active^#(f(X)) -> c_1(f^#(active(X))) , active^#(f(f(X))) -> c_2(c^#(f(g(f(X))))) , active^#(c(X)) -> c_3(d^#(X)) , active^#(h(X)) -> c_4(c^#(d(X))) , active^#(h(X)) -> c_5(h^#(active(X))) , f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) , c^#(ok(X)) -> c_8(c^#(X)) , d^#(ok(X)) -> c_10(d^#(X)) , h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) , g^#(ok(X)) -> c_9(g^#(X)) , proper^#(f(X)) -> c_13(f^#(proper(X))) , proper^#(c(X)) -> c_14(c^#(proper(X))) , proper^#(g(X)) -> c_15(g^#(proper(X))) , proper^#(d(X)) -> c_16(d^#(proper(X))) , proper^#(h(X)) -> c_17(h^#(proper(X))) , top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) We replace rewrite rules by usable rules: Strict Usable Rules: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { active^#(f(X)) -> c_1(f^#(active(X))) , active^#(f(f(X))) -> c_2(c^#(f(g(f(X))))) , active^#(c(X)) -> c_3(d^#(X)) , active^#(h(X)) -> c_4(c^#(d(X))) , active^#(h(X)) -> c_5(h^#(active(X))) , f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) , c^#(ok(X)) -> c_8(c^#(X)) , d^#(ok(X)) -> c_10(d^#(X)) , h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) , g^#(ok(X)) -> c_9(g^#(X)) , proper^#(f(X)) -> c_13(f^#(proper(X))) , proper^#(c(X)) -> c_14(c^#(proper(X))) , proper^#(g(X)) -> c_15(g^#(proper(X))) , proper^#(d(X)) -> c_16(d^#(proper(X))) , proper^#(h(X)) -> c_17(h^#(proper(X))) , top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) Consider the dependency graph: 1: active^#(f(X)) -> c_1(f^#(active(X))) -->_1 f^#(ok(X)) -> c_7(f^#(X)) :7 -->_1 f^#(mark(X)) -> c_6(f^#(X)) :6 2: active^#(f(f(X))) -> c_2(c^#(f(g(f(X))))) -->_1 c^#(ok(X)) -> c_8(c^#(X)) :8 3: active^#(c(X)) -> c_3(d^#(X)) -->_1 d^#(ok(X)) -> c_10(d^#(X)) :9 4: active^#(h(X)) -> c_4(c^#(d(X))) -->_1 c^#(ok(X)) -> c_8(c^#(X)) :8 5: active^#(h(X)) -> c_5(h^#(active(X))) -->_1 h^#(ok(X)) -> c_12(h^#(X)) :11 -->_1 h^#(mark(X)) -> c_11(h^#(X)) :10 6: f^#(mark(X)) -> c_6(f^#(X)) -->_1 f^#(ok(X)) -> c_7(f^#(X)) :7 -->_1 f^#(mark(X)) -> c_6(f^#(X)) :6 7: f^#(ok(X)) -> c_7(f^#(X)) -->_1 f^#(ok(X)) -> c_7(f^#(X)) :7 -->_1 f^#(mark(X)) -> c_6(f^#(X)) :6 8: c^#(ok(X)) -> c_8(c^#(X)) -->_1 c^#(ok(X)) -> c_8(c^#(X)) :8 9: d^#(ok(X)) -> c_10(d^#(X)) -->_1 d^#(ok(X)) -> c_10(d^#(X)) :9 10: h^#(mark(X)) -> c_11(h^#(X)) -->_1 h^#(ok(X)) -> c_12(h^#(X)) :11 -->_1 h^#(mark(X)) -> c_11(h^#(X)) :10 11: h^#(ok(X)) -> c_12(h^#(X)) -->_1 h^#(ok(X)) -> c_12(h^#(X)) :11 -->_1 h^#(mark(X)) -> c_11(h^#(X)) :10 12: g^#(ok(X)) -> c_9(g^#(X)) -->_1 g^#(ok(X)) -> c_9(g^#(X)) :12 13: proper^#(f(X)) -> c_13(f^#(proper(X))) -->_1 f^#(ok(X)) -> c_7(f^#(X)) :7 -->_1 f^#(mark(X)) -> c_6(f^#(X)) :6 14: proper^#(c(X)) -> c_14(c^#(proper(X))) -->_1 c^#(ok(X)) -> c_8(c^#(X)) :8 15: proper^#(g(X)) -> c_15(g^#(proper(X))) -->_1 g^#(ok(X)) -> c_9(g^#(X)) :12 16: proper^#(d(X)) -> c_16(d^#(proper(X))) -->_1 d^#(ok(X)) -> c_10(d^#(X)) :9 17: proper^#(h(X)) -> c_17(h^#(proper(X))) -->_1 h^#(ok(X)) -> c_12(h^#(X)) :11 -->_1 h^#(mark(X)) -> c_11(h^#(X)) :10 18: top^#(mark(X)) -> c_18(top^#(proper(X))) -->_1 top^#(ok(X)) -> c_19(top^#(active(X))) :19 -->_1 top^#(mark(X)) -> c_18(top^#(proper(X))) :18 19: top^#(ok(X)) -> c_19(top^#(active(X))) -->_1 top^#(ok(X)) -> c_19(top^#(active(X))) :19 -->_1 top^#(mark(X)) -> c_18(top^#(proper(X))) :18 Only the nodes {6,7,8,9,10,11,12,18,19} are reachable from nodes {6,7,8,9,10,11,12,18,19} that start derivation from marked basic terms. The nodes not reachable are removed from the problem. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict DPs: { f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) , c^#(ok(X)) -> c_8(c^#(X)) , d^#(ok(X)) -> c_10(d^#(X)) , h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) , g^#(ok(X)) -> c_9(g^#(X)) , top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) We employ 'linear path analysis' using the following approximated dependency graph: ->{1,2} [ YES(O(1),O(n^1)) ] ->{3} [ YES(O(1),O(n^1)) ] ->{4} [ YES(O(1),O(n^1)) ] ->{5,6} [ YES(O(1),O(n^1)) ] ->{7} [ YES(O(1),O(n^1)) ] ->{8,9} [ YES(O(1),O(n^1)) ] Here dependency-pairs are as follows: Strict DPs: { 1: f^#(mark(X)) -> c_6(f^#(X)) , 2: f^#(ok(X)) -> c_7(f^#(X)) , 3: c^#(ok(X)) -> c_8(c^#(X)) , 4: d^#(ok(X)) -> c_10(d^#(X)) , 5: h^#(mark(X)) -> c_11(h^#(X)) , 6: h^#(ok(X)) -> c_12(h^#(X)) , 7: g^#(ok(X)) -> c_9(g^#(X)) , 8: top^#(mark(X)) -> c_18(top^#(proper(X))) , 9: top^#(ok(X)) -> c_19(top^#(active(X))) } * Path {1,2}: YES(O(1),O(n^1)) ---------------------------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f^#(mark(X)) -> c_6(f^#(X)) , 2: f^#(ok(X)) -> c_7(f^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_6) = {1}, Uargs(c_7) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [mark](x1) = [1] x1 + [4] [ok](x1) = [1] x1 + [4] [f^#](x1) = [2] x1 + [0] [c_6](x1) = [1] x1 + [0] [c_7](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [f^#(mark(X))] = [2] X + [8] > [2] X + [0] = [c_6(f^#(X))] [f^#(ok(X))] = [2] X + [8] > [2] X + [1] = [c_7(f^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f^#(mark(X)) -> c_6(f^#(X)) , f^#(ok(X)) -> c_7(f^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded * Path {3}: YES(O(1),O(n^1)) -------------------------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { c^#(ok(X)) -> c_8(c^#(X)) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { c^#(ok(X)) -> c_8(c^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: c^#(ok(X)) -> c_8(c^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_8) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [ok](x1) = [1] x1 + [2] [c^#](x1) = [4] x1 + [0] [c_8](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [c^#(ok(X))] = [4] X + [8] > [4] X + [1] = [c_8(c^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { c^#(ok(X)) -> c_8(c^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { c^#(ok(X)) -> c_8(c^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded * Path {4}: YES(O(1),O(n^1)) -------------------------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { d^#(ok(X)) -> c_10(d^#(X)) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { d^#(ok(X)) -> c_10(d^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: d^#(ok(X)) -> c_10(d^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_10) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [ok](x1) = [1] x1 + [2] [d^#](x1) = [4] x1 + [0] [c_10](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [d^#(ok(X))] = [4] X + [8] > [4] X + [1] = [c_10(d^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { d^#(ok(X)) -> c_10(d^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { d^#(ok(X)) -> c_10(d^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded * Path {5,6}: YES(O(1),O(n^1)) ---------------------------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: h^#(mark(X)) -> c_11(h^#(X)) , 2: h^#(ok(X)) -> c_12(h^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_11) = {1}, Uargs(c_12) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [mark](x1) = [1] x1 + [4] [ok](x1) = [1] x1 + [4] [h^#](x1) = [2] x1 + [0] [c_11](x1) = [1] x1 + [0] [c_12](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [h^#(mark(X))] = [2] X + [8] > [2] X + [0] = [c_11(h^#(X))] [h^#(ok(X))] = [2] X + [8] > [2] X + [1] = [c_12(h^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { h^#(mark(X)) -> c_11(h^#(X)) , h^#(ok(X)) -> c_12(h^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded * Path {7}: YES(O(1),O(n^1)) -------------------------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { g^#(ok(X)) -> c_9(g^#(X)) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { g^#(ok(X)) -> c_9(g^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: g^#(ok(X)) -> c_9(g^#(X)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_9) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [ok](x1) = [1] x1 + [2] [g^#](x1) = [4] x1 + [0] [c_9](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [g^#(ok(X))] = [4] X + [8] > [4] X + [1] = [c_9(g^#(X))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { g^#(ok(X)) -> c_9(g^#(X)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g^#(ok(X)) -> c_9(g^#(X)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded * Path {8,9}: YES(O(1),O(n^1)) ---------------------------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1] x1 + [1] [f](x1) = [1] x1 + [0] [mark](x1) = [1] x1 + [0] [c](x1) = [1] x1 + [0] [g](x1) = [1] x1 + [0] [d](x1) = [1] x1 + [0] [h](x1) = [1] x1 + [0] [proper](x1) = [1] x1 + [0] [ok](x1) = [1] x1 + [0] [top^#](x1) = [1] x1 + [0] [c_18](x1) = [1] x1 + [0] [c_19](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [active(f(X))] = [1] X + [1] >= [1] X + [1] = [f(active(X))] [active(f(f(X)))] = [1] X + [1] > [1] X + [0] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1] X + [1] > [1] X + [0] = [mark(d(X))] [active(h(X))] = [1] X + [1] > [1] X + [0] = [mark(c(d(X)))] [active(h(X))] = [1] X + [1] >= [1] X + [1] = [h(active(X))] [f(mark(X))] = [1] X + [0] >= [1] X + [0] = [mark(f(X))] [f(ok(X))] = [1] X + [0] >= [1] X + [0] = [ok(f(X))] [c(ok(X))] = [1] X + [0] >= [1] X + [0] = [ok(c(X))] [g(ok(X))] = [1] X + [0] >= [1] X + [0] = [ok(g(X))] [d(ok(X))] = [1] X + [0] >= [1] X + [0] = [ok(d(X))] [h(mark(X))] = [1] X + [0] >= [1] X + [0] = [mark(h(X))] [h(ok(X))] = [1] X + [0] >= [1] X + [0] = [ok(h(X))] [proper(f(X))] = [1] X + [0] >= [1] X + [0] = [f(proper(X))] [proper(c(X))] = [1] X + [0] >= [1] X + [0] = [c(proper(X))] [proper(g(X))] = [1] X + [0] >= [1] X + [0] = [g(proper(X))] [proper(d(X))] = [1] X + [0] >= [1] X + [0] = [d(proper(X))] [proper(h(X))] = [1] X + [0] >= [1] X + [0] = [h(proper(X))] [top^#(mark(X))] = [1] X + [0] >= [1] X + [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [1] X + [0] ? [1] X + [1] = [c_19(top^#(active(X)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak Trs: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1] x1 + [7] [f](x1) = [1] x1 + [0] [mark](x1) = [1] x1 + [2] [c](x1) = [1] x1 + [0] [g](x1) = [1] x1 + [4] [d](x1) = [1] x1 + [2] [h](x1) = [1] x1 + [5] [proper](x1) = [1] x1 + [0] [ok](x1) = [1] x1 + [1] [top^#](x1) = [1] x1 + [4] [c_18](x1) = [1] x1 + [0] [c_19](x1) = [1] x1 + [1] The order satisfies the following ordering constraints: [active(f(X))] = [1] X + [7] >= [1] X + [7] = [f(active(X))] [active(f(f(X)))] = [1] X + [7] > [1] X + [6] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1] X + [7] > [1] X + [4] = [mark(d(X))] [active(h(X))] = [1] X + [12] > [1] X + [4] = [mark(c(d(X)))] [active(h(X))] = [1] X + [12] >= [1] X + [12] = [h(active(X))] [f(mark(X))] = [1] X + [2] >= [1] X + [2] = [mark(f(X))] [f(ok(X))] = [1] X + [1] >= [1] X + [1] = [ok(f(X))] [c(ok(X))] = [1] X + [1] >= [1] X + [1] = [ok(c(X))] [g(ok(X))] = [1] X + [5] >= [1] X + [5] = [ok(g(X))] [d(ok(X))] = [1] X + [3] >= [1] X + [3] = [ok(d(X))] [h(mark(X))] = [1] X + [7] >= [1] X + [7] = [mark(h(X))] [h(ok(X))] = [1] X + [6] >= [1] X + [6] = [ok(h(X))] [proper(f(X))] = [1] X + [0] >= [1] X + [0] = [f(proper(X))] [proper(c(X))] = [1] X + [0] >= [1] X + [0] = [c(proper(X))] [proper(g(X))] = [1] X + [4] >= [1] X + [4] = [g(proper(X))] [proper(d(X))] = [1] X + [2] >= [1] X + [2] = [d(proper(X))] [proper(h(X))] = [1] X + [5] >= [1] X + [5] = [h(proper(X))] [top^#(mark(X))] = [1] X + [6] > [1] X + [4] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [1] X + [5] ? [1] X + [12] = [c_19(top^#(active(X)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { top^#(ok(X)) -> c_19(top^#(active(X))) } Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) } Weak Trs: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The weightgap principle applies (using the following nonconstant growth matrix-interpretation) TcT has computed the following matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1] x1 + [4] [f](x1) = [1] x1 + [4] [mark](x1) = [1] x1 + [4] [c](x1) = [1] x1 + [0] [g](x1) = [1] x1 + [0] [d](x1) = [1] x1 + [0] [h](x1) = [1] x1 + [0] [proper](x1) = [1] x1 + [4] [ok](x1) = [1] x1 + [5] [top^#](x1) = [1] x1 + [0] [c_18](x1) = [1] x1 + [0] [c_19](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [active(f(X))] = [1] X + [8] >= [1] X + [8] = [f(active(X))] [active(f(f(X)))] = [1] X + [12] >= [1] X + [12] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1] X + [4] >= [1] X + [4] = [mark(d(X))] [active(h(X))] = [1] X + [4] >= [1] X + [4] = [mark(c(d(X)))] [active(h(X))] = [1] X + [4] >= [1] X + [4] = [h(active(X))] [f(mark(X))] = [1] X + [8] >= [1] X + [8] = [mark(f(X))] [f(ok(X))] = [1] X + [9] >= [1] X + [9] = [ok(f(X))] [c(ok(X))] = [1] X + [5] >= [1] X + [5] = [ok(c(X))] [g(ok(X))] = [1] X + [5] >= [1] X + [5] = [ok(g(X))] [d(ok(X))] = [1] X + [5] >= [1] X + [5] = [ok(d(X))] [h(mark(X))] = [1] X + [4] >= [1] X + [4] = [mark(h(X))] [h(ok(X))] = [1] X + [5] >= [1] X + [5] = [ok(h(X))] [proper(f(X))] = [1] X + [8] >= [1] X + [8] = [f(proper(X))] [proper(c(X))] = [1] X + [4] >= [1] X + [4] = [c(proper(X))] [proper(g(X))] = [1] X + [4] >= [1] X + [4] = [g(proper(X))] [proper(d(X))] = [1] X + [4] >= [1] X + [4] = [d(proper(X))] [proper(h(X))] = [1] X + [4] >= [1] X + [4] = [h(proper(X))] [top^#(mark(X))] = [1] X + [4] >= [1] X + [4] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [1] X + [5] > [1] X + [4] = [c_19(top^#(active(X)))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. Trs: { f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [active](x1) = [1] x1 + [0] [f](x1) = [3] x1 + [2] [mark](x1) = [1] x1 + [0] [c](x1) = [1] x1 + [0] [g](x1) = [1] x1 + [0] [d](x1) = [1] x1 + [0] [h](x1) = [2] x1 + [2] [proper](x1) = [1] x1 + [0] [ok](x1) = [1] x1 + [4] [top^#](x1) = [3] x1 + [2] [c_18](x1) = [1] x1 + [0] [c_19](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [active(f(X))] = [3] X + [2] >= [3] X + [2] = [f(active(X))] [active(f(f(X)))] = [9] X + [8] >= [9] X + [8] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1] X + [0] >= [1] X + [0] = [mark(d(X))] [active(h(X))] = [2] X + [2] > [1] X + [0] = [mark(c(d(X)))] [active(h(X))] = [2] X + [2] >= [2] X + [2] = [h(active(X))] [f(mark(X))] = [3] X + [2] >= [3] X + [2] = [mark(f(X))] [f(ok(X))] = [3] X + [14] > [3] X + [6] = [ok(f(X))] [c(ok(X))] = [1] X + [4] >= [1] X + [4] = [ok(c(X))] [g(ok(X))] = [1] X + [4] >= [1] X + [4] = [ok(g(X))] [d(ok(X))] = [1] X + [4] >= [1] X + [4] = [ok(d(X))] [h(mark(X))] = [2] X + [2] >= [2] X + [2] = [mark(h(X))] [h(ok(X))] = [2] X + [10] > [2] X + [6] = [ok(h(X))] [proper(f(X))] = [3] X + [2] >= [3] X + [2] = [f(proper(X))] [proper(c(X))] = [1] X + [0] >= [1] X + [0] = [c(proper(X))] [proper(g(X))] = [1] X + [0] >= [1] X + [0] = [g(proper(X))] [proper(d(X))] = [1] X + [0] >= [1] X + [0] = [d(proper(X))] [proper(h(X))] = [2] X + [2] >= [2] X + [2] = [h(proper(X))] [top^#(mark(X))] = [3] X + [2] >= [3] X + [2] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [3] X + [14] > [3] X + [2] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { active(f(X)) -> f(active(X)) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [2 0] x1 + [0] [0 0] [0] [f](x1) = [2 0] x1 + [2] [0 2] [0] [mark](x1) = [1 0] x1 + [1] [0 0] [0] [c](x1) = [1 0] x1 + [2] [0 4] [0] [g](x1) = [1 0] x1 + [1] [0 4] [0] [d](x1) = [1 0] x1 + [0] [0 1] [0] [h](x1) = [1 0] x1 + [2] [0 3] [0] [proper](x1) = [1 0] x1 + [0] [0 0] [0] [ok](x1) = [1 0] x1 + [2] [1 0] [2] [top^#](x1) = [1 3] x1 + [7] [0 0] [1] [c_18](x1) = [1 1] x1 + [0] [0 0] [0] [c_19](x1) = [2 1] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [4 0] X + [4] [0 0] [0] > [4 0] X + [2] [0 0] [0] = [f(active(X))] [active(f(f(X)))] = [8 0] X + [12] [0 0] [0] > [4 0] X + [11] [0 0] [0] = [mark(c(f(g(f(X)))))] [active(c(X))] = [2 0] X + [4] [0 0] [0] > [1 0] X + [1] [0 0] [0] = [mark(d(X))] [active(h(X))] = [2 0] X + [4] [0 0] [0] > [1 0] X + [3] [0 0] [0] = [mark(c(d(X)))] [active(h(X))] = [2 0] X + [4] [0 0] [0] > [2 0] X + [2] [0 0] [0] = [h(active(X))] [f(mark(X))] = [2 0] X + [4] [0 0] [0] > [2 0] X + [3] [0 0] [0] = [mark(f(X))] [f(ok(X))] = [2 0] X + [6] [2 0] [4] > [2 0] X + [4] [2 0] [4] = [ok(f(X))] [c(ok(X))] = [1 0] X + [4] [4 0] [8] >= [1 0] X + [4] [1 0] [4] = [ok(c(X))] [g(ok(X))] = [1 0] X + [3] [4 0] [8] >= [1 0] X + [3] [1 0] [3] = [ok(g(X))] [d(ok(X))] = [1 0] X + [2] [1 0] [2] >= [1 0] X + [2] [1 0] [2] = [ok(d(X))] [h(mark(X))] = [1 0] X + [3] [0 0] [0] >= [1 0] X + [3] [0 0] [0] = [mark(h(X))] [h(ok(X))] = [1 0] X + [4] [3 0] [6] >= [1 0] X + [4] [1 0] [4] = [ok(h(X))] [proper(f(X))] = [2 0] X + [2] [0 0] [0] >= [2 0] X + [2] [0 0] [0] = [f(proper(X))] [proper(c(X))] = [1 0] X + [2] [0 0] [0] >= [1 0] X + [2] [0 0] [0] = [c(proper(X))] [proper(g(X))] = [1 0] X + [1] [0 0] [0] >= [1 0] X + [1] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [1 0] X + [2] [0 0] [0] >= [1 0] X + [2] [0 0] [0] = [h(proper(X))] [top^#(mark(X))] = [1 0] X + [8] [0 0] [1] >= [1 0] X + [8] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [4 0] X + [15] [0 0] [1] >= [4 0] X + [15] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , h(ok(X)) -> ok(h(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { c(ok(X)) -> ok(c(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [2 0] x1 + [0] [0 0] [0] [f](x1) = [2 0] x1 + [0] [0 3] [0] [mark](x1) = [1 0] x1 + [0] [0 0] [0] [c](x1) = [2 0] x1 + [0] [0 4] [0] [g](x1) = [1 0] x1 + [0] [0 2] [0] [d](x1) = [1 0] x1 + [0] [0 4] [0] [h](x1) = [1 0] x1 + [0] [0 1] [0] [proper](x1) = [1 0] x1 + [0] [0 0] [0] [ok](x1) = [1 0] x1 + [2] [1 0] [0] [top^#](x1) = [7 7] x1 + [0] [0 0] [4] [c_18](x1) = [1 0] x1 + [0] [0 0] [0] [c_19](x1) = [1 0] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [f(active(X))] [active(f(f(X)))] = [8 0] X + [0] [0 0] [0] >= [8 0] X + [0] [0 0] [0] = [mark(c(f(g(f(X)))))] [active(c(X))] = [4 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [mark(d(X))] [active(h(X))] = [2 0] X + [0] [0 0] [0] >= [2 0] X + [0] [0 0] [0] = [mark(c(d(X)))] [active(h(X))] = [2 0] X + [0] [0 0] [0] >= [2 0] X + [0] [0 0] [0] = [h(active(X))] [f(mark(X))] = [2 0] X + [0] [0 0] [0] >= [2 0] X + [0] [0 0] [0] = [mark(f(X))] [f(ok(X))] = [2 0] X + [4] [3 0] [0] > [2 0] X + [2] [2 0] [0] = [ok(f(X))] [c(ok(X))] = [2 0] X + [4] [4 0] [0] > [2 0] X + [2] [2 0] [0] = [ok(c(X))] [g(ok(X))] = [1 0] X + [2] [2 0] [0] >= [1 0] X + [2] [1 0] [0] = [ok(g(X))] [d(ok(X))] = [1 0] X + [2] [4 0] [0] >= [1 0] X + [2] [1 0] [0] = [ok(d(X))] [h(mark(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [mark(h(X))] [h(ok(X))] = [1 0] X + [2] [1 0] [0] >= [1 0] X + [2] [1 0] [0] = [ok(h(X))] [proper(f(X))] = [2 0] X + [0] [0 0] [0] >= [2 0] X + [0] [0 0] [0] = [f(proper(X))] [proper(c(X))] = [2 0] X + [0] [0 0] [0] >= [2 0] X + [0] [0 0] [0] = [c(proper(X))] [proper(g(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [h(proper(X))] [top^#(mark(X))] = [7 0] X + [0] [0 0] [4] >= [7 0] X + [0] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [14 0] X + [14] [ 0 0] [4] > [14 0] X + [0] [ 0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , h(ok(X)) -> ok(h(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { h(mark(X)) -> mark(h(X)) , proper(f(X)) -> f(proper(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 2] x1 + [0] [0 1] [0] [f](x1) = [2 0] x1 + [1] [0 2] [1] [mark](x1) = [1 1] x1 + [1] [0 0] [0] [c](x1) = [1 0] x1 + [2] [0 1] [0] [g](x1) = [1 0] x1 + [0] [0 1] [0] [d](x1) = [1 0] x1 + [0] [0 1] [0] [h](x1) = [2 0] x1 + [5] [0 2] [0] [proper](x1) = [1 1] x1 + [0] [0 1] [0] [ok](x1) = [1 4] x1 + [4] [0 0] [1] [top^#](x1) = [1 0] x1 + [0] [0 1] [0] [c_18](x1) = [1 0] x1 + [0] [0 0] [0] [c_19](x1) = [1 2] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [2 4] X + [3] [0 2] [1] > [2 4] X + [1] [0 2] [1] = [f(active(X))] [active(f(f(X)))] = [4 8] X + [9] [0 4] [3] >= [4 4] X + [9] [0 0] [0] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1 2] X + [2] [0 1] [0] > [1 1] X + [1] [0 0] [0] = [mark(d(X))] [active(h(X))] = [2 4] X + [5] [0 2] [0] > [1 1] X + [3] [0 0] [0] = [mark(c(d(X)))] [active(h(X))] = [2 4] X + [5] [0 2] [0] >= [2 4] X + [5] [0 2] [0] = [h(active(X))] [f(mark(X))] = [2 2] X + [3] [0 0] [1] >= [2 2] X + [3] [0 0] [0] = [mark(f(X))] [f(ok(X))] = [2 8] X + [9] [0 0] [3] >= [2 8] X + [9] [0 0] [1] = [ok(f(X))] [c(ok(X))] = [1 4] X + [6] [0 0] [1] >= [1 4] X + [6] [0 0] [1] = [ok(c(X))] [g(ok(X))] = [1 4] X + [4] [0 0] [1] >= [1 4] X + [4] [0 0] [1] = [ok(g(X))] [d(ok(X))] = [1 4] X + [4] [0 0] [1] >= [1 4] X + [4] [0 0] [1] = [ok(d(X))] [h(mark(X))] = [2 2] X + [7] [0 0] [0] > [2 2] X + [6] [0 0] [0] = [mark(h(X))] [h(ok(X))] = [2 8] X + [13] [0 0] [2] > [2 8] X + [9] [0 0] [1] = [ok(h(X))] [proper(f(X))] = [2 2] X + [2] [0 2] [1] > [2 2] X + [1] [0 2] [1] = [f(proper(X))] [proper(c(X))] = [1 1] X + [2] [0 1] [0] >= [1 1] X + [2] [0 1] [0] = [c(proper(X))] [proper(g(X))] = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = [g(proper(X))] [proper(d(X))] = [1 1] X + [0] [0 1] [0] >= [1 1] X + [0] [0 1] [0] = [d(proper(X))] [proper(h(X))] = [2 2] X + [5] [0 2] [0] >= [2 2] X + [5] [0 2] [0] = [h(proper(X))] [top^#(mark(X))] = [1 1] X + [1] [0 0] [0] > [1 1] X + [0] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [1 4] X + [4] [0 0] [1] > [1 4] X + [0] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { g(ok(X)) -> ok(g(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 0] x1 + [0] [0 1] [0] [f](x1) = [2 3] x1 + [2] [3 2] [3] [mark](x1) = [1 0] x1 + [0] [0 1] [1] [c](x1) = [1 0] x1 + [1] [0 0] [1] [g](x1) = [2 0] x1 + [1] [0 0] [0] [d](x1) = [1 0] x1 + [1] [0 0] [0] [h](x1) = [2 0] x1 + [4] [0 2] [3] [proper](x1) = [1 0] x1 + [0] [0 1] [0] [ok](x1) = [1 0] x1 + [3] [0 1] [0] [top^#](x1) = [2 0] x1 + [0] [1 0] [0] [c_18](x1) = [1 0] x1 + [0] [0 0] [0] [c_19](x1) = [1 0] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [2 3] X + [2] [3 2] [3] >= [2 3] X + [2] [3 2] [3] = [f(active(X))] [active(f(f(X)))] = [13 12] X + [15] [12 13] [15] > [8 12] X + [13] [0 0] [2] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1 0] X + [1] [0 0] [1] >= [1 0] X + [1] [0 0] [1] = [mark(d(X))] [active(h(X))] = [2 0] X + [4] [0 2] [3] > [1 0] X + [2] [0 0] [2] = [mark(c(d(X)))] [active(h(X))] = [2 0] X + [4] [0 2] [3] >= [2 0] X + [4] [0 2] [3] = [h(active(X))] [f(mark(X))] = [2 3] X + [5] [3 2] [5] > [2 3] X + [2] [3 2] [4] = [mark(f(X))] [f(ok(X))] = [2 3] X + [8] [3 2] [12] > [2 3] X + [5] [3 2] [3] = [ok(f(X))] [c(ok(X))] = [1 0] X + [4] [0 0] [1] >= [1 0] X + [4] [0 0] [1] = [ok(c(X))] [g(ok(X))] = [2 0] X + [7] [0 0] [0] > [2 0] X + [4] [0 0] [0] = [ok(g(X))] [d(ok(X))] = [1 0] X + [4] [0 0] [0] >= [1 0] X + [4] [0 0] [0] = [ok(d(X))] [h(mark(X))] = [2 0] X + [4] [0 2] [5] >= [2 0] X + [4] [0 2] [4] = [mark(h(X))] [h(ok(X))] = [2 0] X + [10] [0 2] [3] > [2 0] X + [7] [0 2] [3] = [ok(h(X))] [proper(f(X))] = [2 3] X + [2] [3 2] [3] >= [2 3] X + [2] [3 2] [3] = [f(proper(X))] [proper(c(X))] = [1 0] X + [1] [0 0] [1] >= [1 0] X + [1] [0 0] [1] = [c(proper(X))] [proper(g(X))] = [2 0] X + [1] [0 0] [0] >= [2 0] X + [1] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [1 0] X + [1] [0 0] [0] >= [1 0] X + [1] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [2 0] X + [4] [0 2] [3] >= [2 0] X + [4] [0 2] [3] = [h(proper(X))] [top^#(mark(X))] = [2 0] X + [0] [1 0] [0] >= [2 0] X + [0] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [2 0] X + [6] [1 0] [3] > [2 0] X + [0] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { d(ok(X)) -> ok(d(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { d(ok(X)) -> ok(d(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [2 0] x1 + [2] [0 0] [0] [f](x1) = [1 0] x1 + [3] [0 3] [0] [mark](x1) = [1 0] x1 + [1] [0 0] [0] [c](x1) = [1 0] x1 + [0] [0 1] [0] [g](x1) = [2 0] x1 + [4] [0 3] [0] [d](x1) = [2 0] x1 + [0] [0 4] [0] [h](x1) = [2 0] x1 + [2] [0 5] [0] [proper](x1) = [1 0] x1 + [0] [0 0] [0] [ok](x1) = [1 0] x1 + [2] [1 0] [2] [top^#](x1) = [2 4] x1 + [3] [0 0] [1] [c_18](x1) = [1 1] x1 + [0] [0 0] [0] [c_19](x1) = [1 3] x1 + [4] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [2 0] X + [8] [0 0] [0] > [2 0] X + [5] [0 0] [0] = [f(active(X))] [active(f(f(X)))] = [2 0] X + [14] [0 0] [0] >= [2 0] X + [14] [0 0] [0] = [mark(c(f(g(f(X)))))] [active(c(X))] = [2 0] X + [2] [0 0] [0] > [2 0] X + [1] [0 0] [0] = [mark(d(X))] [active(h(X))] = [4 0] X + [6] [0 0] [0] > [2 0] X + [1] [0 0] [0] = [mark(c(d(X)))] [active(h(X))] = [4 0] X + [6] [0 0] [0] >= [4 0] X + [6] [0 0] [0] = [h(active(X))] [f(mark(X))] = [1 0] X + [4] [0 0] [0] >= [1 0] X + [4] [0 0] [0] = [mark(f(X))] [f(ok(X))] = [1 0] X + [5] [3 0] [6] >= [1 0] X + [5] [1 0] [5] = [ok(f(X))] [c(ok(X))] = [1 0] X + [2] [1 0] [2] >= [1 0] X + [2] [1 0] [2] = [ok(c(X))] [g(ok(X))] = [2 0] X + [8] [3 0] [6] > [2 0] X + [6] [2 0] [6] = [ok(g(X))] [d(ok(X))] = [2 0] X + [4] [4 0] [8] > [2 0] X + [2] [2 0] [2] = [ok(d(X))] [h(mark(X))] = [2 0] X + [4] [0 0] [0] > [2 0] X + [3] [0 0] [0] = [mark(h(X))] [h(ok(X))] = [2 0] X + [6] [5 0] [10] > [2 0] X + [4] [2 0] [4] = [ok(h(X))] [proper(f(X))] = [1 0] X + [3] [0 0] [0] >= [1 0] X + [3] [0 0] [0] = [f(proper(X))] [proper(c(X))] = [1 0] X + [0] [0 0] [0] >= [1 0] X + [0] [0 0] [0] = [c(proper(X))] [proper(g(X))] = [2 0] X + [4] [0 0] [0] >= [2 0] X + [4] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [2 0] X + [0] [0 0] [0] >= [2 0] X + [0] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [2 0] X + [2] [0 0] [0] >= [2 0] X + [2] [0 0] [0] = [h(proper(X))] [top^#(mark(X))] = [2 0] X + [5] [0 0] [1] > [2 0] X + [4] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [6 0] X + [15] [0 0] [1] > [4 0] X + [14] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { proper(h(X)) -> h(proper(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 0] x1 + [0] [1 0] [1] [f](x1) = [3 0] x1 + [2] [0 3] [0] [mark](x1) = [1 0] x1 + [0] [1 0] [1] [c](x1) = [1 0] x1 + [0] [0 1] [0] [g](x1) = [1 0] x1 + [0] [0 1] [0] [d](x1) = [1 0] x1 + [0] [0 1] [0] [h](x1) = [5 0] x1 + [4] [0 5] [0] [proper](x1) = [3 0] x1 + [0] [0 0] [0] [ok](x1) = [1 0] x1 + [2] [1 0] [2] [top^#](x1) = [1 3] x1 + [7] [1 0] [2] [c_18](x1) = [1 0] x1 + [0] [0 0] [0] [c_19](x1) = [1 0] x1 + [4] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [3 0] X + [2] [3 0] [3] >= [3 0] X + [2] [3 0] [3] = [f(active(X))] [active(f(f(X)))] = [9 0] X + [8] [9 0] [9] >= [9 0] X + [8] [9 0] [9] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1 0] X + [0] [1 0] [1] >= [1 0] X + [0] [1 0] [1] = [mark(d(X))] [active(h(X))] = [5 0] X + [4] [5 0] [5] > [1 0] X + [0] [1 0] [1] = [mark(c(d(X)))] [active(h(X))] = [5 0] X + [4] [5 0] [5] >= [5 0] X + [4] [5 0] [5] = [h(active(X))] [f(mark(X))] = [3 0] X + [2] [3 0] [3] >= [3 0] X + [2] [3 0] [3] = [mark(f(X))] [f(ok(X))] = [3 0] X + [8] [3 0] [6] > [3 0] X + [4] [3 0] [4] = [ok(f(X))] [c(ok(X))] = [1 0] X + [2] [1 0] [2] >= [1 0] X + [2] [1 0] [2] = [ok(c(X))] [g(ok(X))] = [1 0] X + [2] [1 0] [2] >= [1 0] X + [2] [1 0] [2] = [ok(g(X))] [d(ok(X))] = [1 0] X + [2] [1 0] [2] >= [1 0] X + [2] [1 0] [2] = [ok(d(X))] [h(mark(X))] = [5 0] X + [4] [5 0] [5] >= [5 0] X + [4] [5 0] [5] = [mark(h(X))] [h(ok(X))] = [5 0] X + [14] [5 0] [10] > [5 0] X + [6] [5 0] [6] = [ok(h(X))] [proper(f(X))] = [9 0] X + [6] [0 0] [0] > [9 0] X + [2] [0 0] [0] = [f(proper(X))] [proper(c(X))] = [3 0] X + [0] [0 0] [0] >= [3 0] X + [0] [0 0] [0] = [c(proper(X))] [proper(g(X))] = [3 0] X + [0] [0 0] [0] >= [3 0] X + [0] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [3 0] X + [0] [0 0] [0] >= [3 0] X + [0] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [15 0] X + [12] [ 0 0] [0] > [15 0] X + [4] [ 0 0] [0] = [h(proper(X))] [top^#(mark(X))] = [4 0] X + [10] [1 0] [2] > [3 0] X + [7] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [4 0] X + [15] [1 0] [4] > [4 0] X + [14] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { proper(g(X)) -> g(proper(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 0] x1 + [1] [1 0] [2] [f](x1) = [1 0] x1 + [0] [0 1] [0] [mark](x1) = [1 0] x1 + [0] [1 0] [0] [c](x1) = [1 0] x1 + [0] [0 1] [0] [g](x1) = [1 0] x1 + [1] [0 3] [0] [d](x1) = [1 0] x1 + [0] [0 1] [0] [h](x1) = [1 0] x1 + [0] [0 1] [0] [proper](x1) = [4 0] x1 + [0] [0 0] [0] [ok](x1) = [1 0] x1 + [4] [1 0] [1] [top^#](x1) = [2 6] x1 + [0] [0 0] [0] [c_18](x1) = [1 1] x1 + [0] [0 0] [0] [c_19](x1) = [1 1] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [1 0] X + [1] [1 0] [2] >= [1 0] X + [1] [1 0] [2] = [f(active(X))] [active(f(f(X)))] = [1 0] X + [1] [1 0] [2] >= [1 0] X + [1] [1 0] [1] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1 0] X + [1] [1 0] [2] > [1 0] X + [0] [1 0] [0] = [mark(d(X))] [active(h(X))] = [1 0] X + [1] [1 0] [2] > [1 0] X + [0] [1 0] [0] = [mark(c(d(X)))] [active(h(X))] = [1 0] X + [1] [1 0] [2] >= [1 0] X + [1] [1 0] [2] = [h(active(X))] [f(mark(X))] = [1 0] X + [0] [1 0] [0] >= [1 0] X + [0] [1 0] [0] = [mark(f(X))] [f(ok(X))] = [1 0] X + [4] [1 0] [1] >= [1 0] X + [4] [1 0] [1] = [ok(f(X))] [c(ok(X))] = [1 0] X + [4] [1 0] [1] >= [1 0] X + [4] [1 0] [1] = [ok(c(X))] [g(ok(X))] = [1 0] X + [5] [3 0] [3] >= [1 0] X + [5] [1 0] [2] = [ok(g(X))] [d(ok(X))] = [1 0] X + [4] [1 0] [1] >= [1 0] X + [4] [1 0] [1] = [ok(d(X))] [h(mark(X))] = [1 0] X + [0] [1 0] [0] >= [1 0] X + [0] [1 0] [0] = [mark(h(X))] [h(ok(X))] = [1 0] X + [4] [1 0] [1] >= [1 0] X + [4] [1 0] [1] = [ok(h(X))] [proper(f(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [f(proper(X))] [proper(c(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [c(proper(X))] [proper(g(X))] = [4 0] X + [4] [0 0] [0] > [4 0] X + [1] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [h(proper(X))] [top^#(mark(X))] = [8 0] X + [0] [0 0] [0] >= [8 0] X + [0] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [8 0] X + [14] [0 0] [0] >= [8 0] X + [14] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { proper(c(X)) -> c(proper(X)) , proper(d(X)) -> d(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { proper(d(X)) -> d(proper(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 0] x1 + [1] [1 0] [2] [f](x1) = [1 0] x1 + [0] [0 1] [0] [mark](x1) = [1 0] x1 + [0] [1 0] [1] [c](x1) = [1 0] x1 + [0] [0 1] [0] [g](x1) = [1 0] x1 + [0] [0 1] [0] [d](x1) = [1 0] x1 + [1] [0 2] [0] [h](x1) = [1 0] x1 + [0] [0 1] [0] [proper](x1) = [4 0] x1 + [0] [0 0] [0] [ok](x1) = [1 0] x1 + [3] [1 0] [3] [top^#](x1) = [1 4] x1 + [0] [0 0] [2] [c_18](x1) = [1 1] x1 + [2] [0 0] [0] [c_19](x1) = [1 1] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [1 0] X + [1] [1 0] [2] >= [1 0] X + [1] [1 0] [2] = [f(active(X))] [active(f(f(X)))] = [1 0] X + [1] [1 0] [2] > [1 0] X + [0] [1 0] [1] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1 0] X + [1] [1 0] [2] >= [1 0] X + [1] [1 0] [2] = [mark(d(X))] [active(h(X))] = [1 0] X + [1] [1 0] [2] >= [1 0] X + [1] [1 0] [2] = [mark(c(d(X)))] [active(h(X))] = [1 0] X + [1] [1 0] [2] >= [1 0] X + [1] [1 0] [2] = [h(active(X))] [f(mark(X))] = [1 0] X + [0] [1 0] [1] >= [1 0] X + [0] [1 0] [1] = [mark(f(X))] [f(ok(X))] = [1 0] X + [3] [1 0] [3] >= [1 0] X + [3] [1 0] [3] = [ok(f(X))] [c(ok(X))] = [1 0] X + [3] [1 0] [3] >= [1 0] X + [3] [1 0] [3] = [ok(c(X))] [g(ok(X))] = [1 0] X + [3] [1 0] [3] >= [1 0] X + [3] [1 0] [3] = [ok(g(X))] [d(ok(X))] = [1 0] X + [4] [2 0] [6] >= [1 0] X + [4] [1 0] [4] = [ok(d(X))] [h(mark(X))] = [1 0] X + [0] [1 0] [1] >= [1 0] X + [0] [1 0] [1] = [mark(h(X))] [h(ok(X))] = [1 0] X + [3] [1 0] [3] >= [1 0] X + [3] [1 0] [3] = [ok(h(X))] [proper(f(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [f(proper(X))] [proper(c(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [c(proper(X))] [proper(g(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [4 0] X + [4] [0 0] [0] > [4 0] X + [1] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [4 0] X + [0] [0 0] [0] >= [4 0] X + [0] [0 0] [0] = [h(proper(X))] [top^#(mark(X))] = [5 0] X + [4] [0 0] [2] >= [4 0] X + [4] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [5 0] X + [15] [0 0] [2] > [5 0] X + [11] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict Trs: { proper(c(X)) -> c(proper(X)) } Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 2' to orient following rules strictly. Trs: { proper(c(X)) -> c(proper(X)) } The induced complexity on above rules (modulo remaining rules) is YES(?,O(n^1)) . These rules are moved into the corresponding weak component(s). Sub-proof: ---------- TcT has computed the following constructor-based matrix interpretation satisfying not(EDA) and not(IDA(1)). [active](x1) = [1 0] x1 + [3] [1 0] [2] [f](x1) = [1 0] x1 + [0] [0 1] [0] [mark](x1) = [1 0] x1 + [1] [1 0] [0] [c](x1) = [1 0] x1 + [2] [0 4] [0] [g](x1) = [1 0] x1 + [0] [0 1] [0] [d](x1) = [1 0] x1 + [0] [0 1] [0] [h](x1) = [1 0] x1 + [0] [0 1] [0] [proper](x1) = [3 0] x1 + [1] [0 0] [0] [ok](x1) = [1 0] x1 + [3] [1 0] [2] [top^#](x1) = [1 6] x1 + [0] [1 3] [4] [c_18](x1) = [1 0] x1 + [0] [0 0] [0] [c_19](x1) = [1 0] x1 + [0] [0 0] [0] The order satisfies the following ordering constraints: [active(f(X))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [f(active(X))] [active(f(f(X)))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [mark(c(f(g(f(X)))))] [active(c(X))] = [1 0] X + [5] [1 0] [4] > [1 0] X + [1] [1 0] [0] = [mark(d(X))] [active(h(X))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [mark(c(d(X)))] [active(h(X))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [h(active(X))] [f(mark(X))] = [1 0] X + [1] [1 0] [0] >= [1 0] X + [1] [1 0] [0] = [mark(f(X))] [f(ok(X))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [ok(f(X))] [c(ok(X))] = [1 0] X + [5] [4 0] [8] >= [1 0] X + [5] [1 0] [4] = [ok(c(X))] [g(ok(X))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [ok(g(X))] [d(ok(X))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [ok(d(X))] [h(mark(X))] = [1 0] X + [1] [1 0] [0] >= [1 0] X + [1] [1 0] [0] = [mark(h(X))] [h(ok(X))] = [1 0] X + [3] [1 0] [2] >= [1 0] X + [3] [1 0] [2] = [ok(h(X))] [proper(f(X))] = [3 0] X + [1] [0 0] [0] >= [3 0] X + [1] [0 0] [0] = [f(proper(X))] [proper(c(X))] = [3 0] X + [7] [0 0] [0] > [3 0] X + [3] [0 0] [0] = [c(proper(X))] [proper(g(X))] = [3 0] X + [1] [0 0] [0] >= [3 0] X + [1] [0 0] [0] = [g(proper(X))] [proper(d(X))] = [3 0] X + [1] [0 0] [0] >= [3 0] X + [1] [0 0] [0] = [d(proper(X))] [proper(h(X))] = [3 0] X + [1] [0 0] [0] >= [3 0] X + [1] [0 0] [0] = [h(proper(X))] [top^#(mark(X))] = [7 0] X + [1] [4 0] [5] >= [3 0] X + [1] [0 0] [0] = [c_18(top^#(proper(X)))] [top^#(ok(X))] = [7 0] X + [15] [4 0] [13] >= [7 0] X + [15] [0 0] [0] = [c_19(top^#(active(X)))] We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { top^#(mark(X)) -> c_18(top^#(proper(X))) , top^#(ok(X)) -> c_19(top^#(active(X))) } Weak Trs: { active(f(X)) -> f(active(X)) , active(f(f(X))) -> mark(c(f(g(f(X))))) , active(c(X)) -> mark(d(X)) , active(h(X)) -> mark(c(d(X))) , active(h(X)) -> h(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(ok(X)) -> ok(g(X)) , d(ok(X)) -> ok(d(X)) , h(mark(X)) -> mark(h(X)) , h(ok(X)) -> ok(h(X)) , proper(f(X)) -> f(proper(X)) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , proper(d(X)) -> d(proper(X)) , proper(h(X)) -> h(proper(X)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(?,O(n^1))