We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { active(f(X)) -> f(active(X)) , active(f(f(a()))) -> mark(c(f(g(f(a()))))) , active(g(X)) -> g(active(X)) , f(mark(X)) -> mark(f(X)) , f(ok(X)) -> ok(f(X)) , c(ok(X)) -> ok(c(X)) , g(mark(X)) -> mark(g(X)) , g(ok(X)) -> ok(g(X)) , proper(f(X)) -> f(proper(X)) , proper(a()) -> ok(a()) , proper(c(X)) -> c(proper(X)) , proper(g(X)) -> g(proper(X)) , top(mark(X)) -> top(proper(X)) , top(ok(X)) -> top(active(X)) } Obligation: runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 2. The enriched problem is compatible with the following automaton. { active_0(2) -> 1 , active_1(2) -> 4 , active_2(2) -> 6 , active_2(3) -> 5 , f_0(2) -> 1 , f_1(2) -> 3 , f_2(6) -> 5 , a_0() -> 2 , a_1() -> 3 , mark_0(2) -> 2 , mark_1(3) -> 1 , mark_1(3) -> 3 , c_0(2) -> 1 , c_1(2) -> 3 , g_0(2) -> 1 , g_1(2) -> 3 , g_2(6) -> 5 , proper_0(2) -> 1 , proper_1(2) -> 4 , ok_0(2) -> 2 , ok_1(3) -> 1 , ok_1(3) -> 3 , ok_1(3) -> 4 , top_0(2) -> 1 , top_1(4) -> 1 , top_2(5) -> 1 } Hurray, we answered YES(?,O(n^1))