*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a__c() -> c()
a__c() -> d()
a__g(X) -> a__h(X)
a__g(X) -> g(X)
a__h(X) -> h(X)
a__h(d()) -> a__g(c())
mark(c()) -> a__c()
mark(d()) -> d()
mark(g(X)) -> a__g(X)
mark(h(X)) -> a__h(X)
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1} / {c/0,d/0,g/1,h/1}
Obligation:
Full
basic terms: {a__c,a__g,a__h,mark}/{c,d,g,h}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
a__c() -> c()
a__c() -> d()
a__g(X) -> a__h(X)
a__g(X) -> g(X)
a__h(X) -> h(X)
a__h(d()) -> a__g(c())
mark(c()) -> a__c()
mark(d()) -> d()
mark(g(X)) -> a__g(X)
mark(h(X)) -> a__h(X)
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1} / {c/0,d/0,g/1,h/1}
Obligation:
Innermost
basic terms: {a__c,a__g,a__h,mark}/{c,d,g,h}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
a__c#() -> c_1()
a__c#() -> c_2()
a__g#(X) -> c_3(a__h#(X))
a__g#(X) -> c_4()
a__h#(X) -> c_5()
a__h#(d()) -> c_6(a__g#(c()))
mark#(c()) -> c_7(a__c#())
mark#(d()) -> c_8()
mark#(g(X)) -> c_9(a__g#(X))
mark#(h(X)) -> c_10(a__h#(X))
Weak DPs
and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__c#() -> c_1()
a__c#() -> c_2()
a__g#(X) -> c_3(a__h#(X))
a__g#(X) -> c_4()
a__h#(X) -> c_5()
a__h#(d()) -> c_6(a__g#(c()))
mark#(c()) -> c_7(a__c#())
mark#(d()) -> c_8()
mark#(g(X)) -> c_9(a__g#(X))
mark#(h(X)) -> c_10(a__h#(X))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
a__c() -> c()
a__c() -> d()
a__g(X) -> a__h(X)
a__g(X) -> g(X)
a__h(X) -> h(X)
a__h(d()) -> a__g(c())
mark(c()) -> a__c()
mark(d()) -> d()
mark(g(X)) -> a__g(X)
mark(h(X)) -> a__h(X)
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
a__c#() -> c_1()
a__c#() -> c_2()
a__g#(X) -> c_3(a__h#(X))
a__g#(X) -> c_4()
a__h#(X) -> c_5()
a__h#(d()) -> c_6(a__g#(c()))
mark#(c()) -> c_7(a__c#())
mark#(d()) -> c_8()
mark#(g(X)) -> c_9(a__g#(X))
mark#(h(X)) -> c_10(a__h#(X))
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__c#() -> c_1()
a__c#() -> c_2()
a__g#(X) -> c_3(a__h#(X))
a__g#(X) -> c_4()
a__h#(X) -> c_5()
a__h#(d()) -> c_6(a__g#(c()))
mark#(c()) -> c_7(a__c#())
mark#(d()) -> c_8()
mark#(g(X)) -> c_9(a__g#(X))
mark#(h(X)) -> c_10(a__h#(X))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{1,2,4,5,8}
by application of
Pre({1,2,4,5,8}) = {3,6,7,9,10}.
Here rules are labelled as follows:
1: a__c#() -> c_1()
2: a__c#() -> c_2()
3: a__g#(X) -> c_3(a__h#(X))
4: a__g#(X) -> c_4()
5: a__h#(X) -> c_5()
6: a__h#(d()) -> c_6(a__g#(c()))
7: mark#(c()) -> c_7(a__c#())
8: mark#(d()) -> c_8()
9: mark#(g(X)) -> c_9(a__g#(X))
10: mark#(h(X)) -> c_10(a__h#(X))
*** 1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__g#(X) -> c_3(a__h#(X))
a__h#(d()) -> c_6(a__g#(c()))
mark#(c()) -> c_7(a__c#())
mark#(g(X)) -> c_9(a__g#(X))
mark#(h(X)) -> c_10(a__h#(X))
Strict TRS Rules:
Weak DP Rules:
a__c#() -> c_1()
a__c#() -> c_2()
a__g#(X) -> c_4()
a__h#(X) -> c_5()
mark#(d()) -> c_8()
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
PredecessorEstimation {onSelection = all simple predecessor estimation selector}
Proof:
We estimate the number of application of
{3}
by application of
Pre({3}) = {}.
Here rules are labelled as follows:
1: a__g#(X) -> c_3(a__h#(X))
2: a__h#(d()) -> c_6(a__g#(c()))
3: mark#(c()) -> c_7(a__c#())
4: mark#(g(X)) -> c_9(a__g#(X))
5: mark#(h(X)) -> c_10(a__h#(X))
6: a__c#() -> c_1()
7: a__c#() -> c_2()
8: a__g#(X) -> c_4()
9: a__h#(X) -> c_5()
10: mark#(d()) -> c_8()
*** 1.1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__g#(X) -> c_3(a__h#(X))
a__h#(d()) -> c_6(a__g#(c()))
mark#(g(X)) -> c_9(a__g#(X))
mark#(h(X)) -> c_10(a__h#(X))
Strict TRS Rules:
Weak DP Rules:
a__c#() -> c_1()
a__c#() -> c_2()
a__g#(X) -> c_4()
a__h#(X) -> c_5()
mark#(c()) -> c_7(a__c#())
mark#(d()) -> c_8()
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
RemoveWeakSuffixes
Proof:
Consider the dependency graph
1:S:a__g#(X) -> c_3(a__h#(X))
-->_1 a__h#(d()) -> c_6(a__g#(c())):2
-->_1 a__h#(X) -> c_5():8
2:S:a__h#(d()) -> c_6(a__g#(c()))
-->_1 a__g#(X) -> c_4():7
-->_1 a__g#(X) -> c_3(a__h#(X)):1
3:S:mark#(g(X)) -> c_9(a__g#(X))
-->_1 a__g#(X) -> c_4():7
-->_1 a__g#(X) -> c_3(a__h#(X)):1
4:S:mark#(h(X)) -> c_10(a__h#(X))
-->_1 a__h#(X) -> c_5():8
-->_1 a__h#(d()) -> c_6(a__g#(c())):2
5:W:a__c#() -> c_1()
6:W:a__c#() -> c_2()
7:W:a__g#(X) -> c_4()
8:W:a__h#(X) -> c_5()
9:W:mark#(c()) -> c_7(a__c#())
-->_1 a__c#() -> c_2():6
-->_1 a__c#() -> c_1():5
10:W:mark#(d()) -> c_8()
The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
10: mark#(d()) -> c_8()
9: mark#(c()) -> c_7(a__c#())
6: a__c#() -> c_2()
5: a__c#() -> c_1()
8: a__h#(X) -> c_5()
7: a__g#(X) -> c_4()
*** 1.1.1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__g#(X) -> c_3(a__h#(X))
a__h#(d()) -> c_6(a__g#(c()))
mark#(g(X)) -> c_9(a__g#(X))
mark#(h(X)) -> c_10(a__h#(X))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
RemoveHeads
Proof:
Consider the dependency graph
1:S:a__g#(X) -> c_3(a__h#(X))
-->_1 a__h#(d()) -> c_6(a__g#(c())):2
2:S:a__h#(d()) -> c_6(a__g#(c()))
-->_1 a__g#(X) -> c_3(a__h#(X)):1
3:S:mark#(g(X)) -> c_9(a__g#(X))
-->_1 a__g#(X) -> c_3(a__h#(X)):1
4:S:mark#(h(X)) -> c_10(a__h#(X))
-->_1 a__h#(d()) -> c_6(a__g#(c())):2
Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
[(3,mark#(g(X)) -> c_9(a__g#(X))),(4,mark#(h(X)) -> c_10(a__h#(X)))]
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__g#(X) -> c_3(a__h#(X))
a__h#(d()) -> c_6(a__g#(c()))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
Proof:
The weightgap principle applies using the following constant growth matrix-interpretation:
We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
The following argument positions are considered usable:
uargs(c_3) = {1},
uargs(c_6) = {1}
Following symbols are considered usable:
{}
TcT has computed the following interpretation:
p(a__c) = [0]
p(a__g) = [0]
p(a__h) = [0]
p(c) = [0]
p(d) = [0]
p(g) = [0]
p(h) = [0]
p(mark) = [0]
p(a__c#) = [0]
p(a__g#) = [0]
p(a__h#) = [5]
p(mark#) = [0]
p(c_1) = [0]
p(c_2) = [0]
p(c_3) = [1] x1 + [0]
p(c_4) = [0]
p(c_5) = [0]
p(c_6) = [1] x1 + [0]
p(c_7) = [0]
p(c_8) = [0]
p(c_9) = [0]
p(c_10) = [0]
Following rules are strictly oriented:
a__h#(d()) = [5]
> [0]
= c_6(a__g#(c()))
Following rules are (at-least) weakly oriented:
a__g#(X) = [0]
>= [5]
= c_3(a__h#(X))
Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
a__g#(X) -> c_3(a__h#(X))
Strict TRS Rules:
Weak DP Rules:
a__h#(d()) -> c_6(a__g#(c()))
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
Proof:
We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
The following argument positions are considered usable:
uargs(c_3) = {1},
uargs(c_6) = {1}
Following symbols are considered usable:
{a__c#,a__g#,a__h#,mark#}
TcT has computed the following interpretation:
p(a__c) = [2]
p(a__g) = [8] x1 + [1]
p(a__h) = [8]
p(c) = [0]
p(d) = [5]
p(g) = [0]
p(h) = [0]
p(mark) = [8]
p(a__c#) = [0]
p(a__g#) = [4] x1 + [10]
p(a__h#) = [2] x1 + [1]
p(mark#) = [0]
p(c_1) = [1]
p(c_2) = [1]
p(c_3) = [2] x1 + [0]
p(c_4) = [2]
p(c_5) = [0]
p(c_6) = [1] x1 + [0]
p(c_7) = [0]
p(c_8) = [8]
p(c_9) = [1] x1 + [0]
p(c_10) = [1] x1 + [8]
Following rules are strictly oriented:
a__g#(X) = [4] X + [10]
> [4] X + [2]
= c_3(a__h#(X))
Following rules are (at-least) weakly oriented:
a__h#(d()) = [11]
>= [10]
= c_6(a__g#(c()))
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
a__g#(X) -> c_3(a__h#(X))
a__h#(d()) -> c_6(a__g#(c()))
Weak TRS Rules:
Signature:
{a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
Obligation:
Innermost
basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).