*** 1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__c() -> c()
        a__c() -> d()
        a__g(X) -> a__h(X)
        a__g(X) -> g(X)
        a__h(X) -> h(X)
        a__h(d()) -> a__g(c())
        mark(c()) -> a__c()
        mark(d()) -> d()
        mark(g(X)) -> a__g(X)
        mark(h(X)) -> a__h(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1} / {c/0,d/0,g/1,h/1}
      Obligation:
        Full
        basic terms: {a__c,a__g,a__h,mark}/{c,d,g,h}
    Applied Processor:
      ToInnermost
    Proof:
      switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        a__c() -> c()
        a__c() -> d()
        a__g(X) -> a__h(X)
        a__g(X) -> g(X)
        a__h(X) -> h(X)
        a__h(d()) -> a__g(c())
        mark(c()) -> a__c()
        mark(d()) -> d()
        mark(g(X)) -> a__g(X)
        mark(h(X)) -> a__h(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1} / {c/0,d/0,g/1,h/1}
      Obligation:
        Innermost
        basic terms: {a__c,a__g,a__h,mark}/{c,d,g,h}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following dependency tuples:
      
      Strict DPs
        a__c#() -> c_1()
        a__c#() -> c_2()
        a__g#(X) -> c_3(a__h#(X))
        a__g#(X) -> c_4()
        a__h#(X) -> c_5()
        a__h#(d()) -> c_6(a__g#(c()))
        mark#(c()) -> c_7(a__c#())
        mark#(d()) -> c_8()
        mark#(g(X)) -> c_9(a__g#(X))
        mark#(h(X)) -> c_10(a__h#(X))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        a__c#() -> c_1()
        a__c#() -> c_2()
        a__g#(X) -> c_3(a__h#(X))
        a__g#(X) -> c_4()
        a__h#(X) -> c_5()
        a__h#(d()) -> c_6(a__g#(c()))
        mark#(c()) -> c_7(a__c#())
        mark#(d()) -> c_8()
        mark#(g(X)) -> c_9(a__g#(X))
        mark#(h(X)) -> c_10(a__h#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        a__c() -> c()
        a__c() -> d()
        a__g(X) -> a__h(X)
        a__g(X) -> g(X)
        a__h(X) -> h(X)
        a__h(d()) -> a__g(c())
        mark(c()) -> a__c()
        mark(d()) -> d()
        mark(g(X)) -> a__g(X)
        mark(h(X)) -> a__h(X)
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        a__c#() -> c_1()
        a__c#() -> c_2()
        a__g#(X) -> c_3(a__h#(X))
        a__g#(X) -> c_4()
        a__h#(X) -> c_5()
        a__h#(d()) -> c_6(a__g#(c()))
        mark#(c()) -> c_7(a__c#())
        mark#(d()) -> c_8()
        mark#(g(X)) -> c_9(a__g#(X))
        mark#(h(X)) -> c_10(a__h#(X))
*** 1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        a__c#() -> c_1()
        a__c#() -> c_2()
        a__g#(X) -> c_3(a__h#(X))
        a__g#(X) -> c_4()
        a__h#(X) -> c_5()
        a__h#(d()) -> c_6(a__g#(c()))
        mark#(c()) -> c_7(a__c#())
        mark#(d()) -> c_8()
        mark#(g(X)) -> c_9(a__g#(X))
        mark#(h(X)) -> c_10(a__h#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1,2,4,5,8}
      by application of
        Pre({1,2,4,5,8}) = {3,6,7,9,10}.
      Here rules are labelled as follows:
        1:  a__c#() -> c_1()             
        2:  a__c#() -> c_2()             
        3:  a__g#(X) -> c_3(a__h#(X))    
        4:  a__g#(X) -> c_4()            
        5:  a__h#(X) -> c_5()            
        6:  a__h#(d()) -> c_6(a__g#(c()))
        7:  mark#(c()) -> c_7(a__c#())   
        8:  mark#(d()) -> c_8()          
        9:  mark#(g(X)) -> c_9(a__g#(X)) 
        10: mark#(h(X)) -> c_10(a__h#(X))
*** 1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        a__g#(X) -> c_3(a__h#(X))
        a__h#(d()) -> c_6(a__g#(c()))
        mark#(c()) -> c_7(a__c#())
        mark#(g(X)) -> c_9(a__g#(X))
        mark#(h(X)) -> c_10(a__h#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        a__c#() -> c_1()
        a__c#() -> c_2()
        a__g#(X) -> c_4()
        a__h#(X) -> c_5()
        mark#(d()) -> c_8()
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {3}
      by application of
        Pre({3}) = {}.
      Here rules are labelled as follows:
        1:  a__g#(X) -> c_3(a__h#(X))    
        2:  a__h#(d()) -> c_6(a__g#(c()))
        3:  mark#(c()) -> c_7(a__c#())   
        4:  mark#(g(X)) -> c_9(a__g#(X)) 
        5:  mark#(h(X)) -> c_10(a__h#(X))
        6:  a__c#() -> c_1()             
        7:  a__c#() -> c_2()             
        8:  a__g#(X) -> c_4()            
        9:  a__h#(X) -> c_5()            
        10: mark#(d()) -> c_8()          
*** 1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        a__g#(X) -> c_3(a__h#(X))
        a__h#(d()) -> c_6(a__g#(c()))
        mark#(g(X)) -> c_9(a__g#(X))
        mark#(h(X)) -> c_10(a__h#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        a__c#() -> c_1()
        a__c#() -> c_2()
        a__g#(X) -> c_4()
        a__h#(X) -> c_5()
        mark#(c()) -> c_7(a__c#())
        mark#(d()) -> c_8()
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:a__g#(X) -> c_3(a__h#(X))
           -->_1 a__h#(d()) -> c_6(a__g#(c())):2
           -->_1 a__h#(X) -> c_5():8
        
        2:S:a__h#(d()) -> c_6(a__g#(c()))
           -->_1 a__g#(X) -> c_4():7
           -->_1 a__g#(X) -> c_3(a__h#(X)):1
        
        3:S:mark#(g(X)) -> c_9(a__g#(X))
           -->_1 a__g#(X) -> c_4():7
           -->_1 a__g#(X) -> c_3(a__h#(X)):1
        
        4:S:mark#(h(X)) -> c_10(a__h#(X))
           -->_1 a__h#(X) -> c_5():8
           -->_1 a__h#(d()) -> c_6(a__g#(c())):2
        
        5:W:a__c#() -> c_1()
           
        
        6:W:a__c#() -> c_2()
           
        
        7:W:a__g#(X) -> c_4()
           
        
        8:W:a__h#(X) -> c_5()
           
        
        9:W:mark#(c()) -> c_7(a__c#())
           -->_1 a__c#() -> c_2():6
           -->_1 a__c#() -> c_1():5
        
        10:W:mark#(d()) -> c_8()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        10: mark#(d()) -> c_8()       
        9:  mark#(c()) -> c_7(a__c#())
        6:  a__c#() -> c_2()          
        5:  a__c#() -> c_1()          
        8:  a__h#(X) -> c_5()         
        7:  a__g#(X) -> c_4()         
*** 1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        a__g#(X) -> c_3(a__h#(X))
        a__h#(d()) -> c_6(a__g#(c()))
        mark#(g(X)) -> c_9(a__g#(X))
        mark#(h(X)) -> c_10(a__h#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:a__g#(X) -> c_3(a__h#(X))
         -->_1 a__h#(d()) -> c_6(a__g#(c())):2
      
      2:S:a__h#(d()) -> c_6(a__g#(c()))
         -->_1 a__g#(X) -> c_3(a__h#(X)):1
      
      3:S:mark#(g(X)) -> c_9(a__g#(X))
         -->_1 a__g#(X) -> c_3(a__h#(X)):1
      
      4:S:mark#(h(X)) -> c_10(a__h#(X))
         -->_1 a__h#(d()) -> c_6(a__g#(c())):2
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(3,mark#(g(X)) -> c_9(a__g#(X))),(4,mark#(h(X)) -> c_10(a__h#(X)))]
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        a__g#(X) -> c_3(a__h#(X))
        a__h#(d()) -> c_6(a__g#(c()))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following constant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
        The following argument positions are considered usable:
          uargs(c_3) = {1},
          uargs(c_6) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
           p(a__c) = [0]         
           p(a__g) = [0]         
           p(a__h) = [0]         
              p(c) = [0]         
              p(d) = [0]         
              p(g) = [0]         
              p(h) = [0]         
           p(mark) = [0]         
          p(a__c#) = [0]         
          p(a__g#) = [0]         
          p(a__h#) = [5]         
          p(mark#) = [0]         
            p(c_1) = [0]         
            p(c_2) = [0]         
            p(c_3) = [1] x1 + [0]
            p(c_4) = [0]         
            p(c_5) = [0]         
            p(c_6) = [1] x1 + [0]
            p(c_7) = [0]         
            p(c_8) = [0]         
            p(c_9) = [0]         
           p(c_10) = [0]         
        
        Following rules are strictly oriented:
        a__h#(d()) = [5]            
                   > [0]            
                   = c_6(a__g#(c()))
        
        
        Following rules are (at-least) weakly oriented:
        a__g#(X) =  [0]          
                 >= [5]          
                 =  c_3(a__h#(X))
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        a__g#(X) -> c_3(a__h#(X))
      Strict TRS Rules:
        
      Weak DP Rules:
        a__h#(d()) -> c_6(a__g#(c()))
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      NaturalMI {miDimension = 1, miDegree = 0, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just any strict-rules, greedy = NoGreedy}
    Proof:
      We apply a matrix interpretation of kind constructor based matrix interpretation (containing no more than 0 non-zero interpretation-entries in the diagonal of the component-wise maxima):
      The following argument positions are considered usable:
        uargs(c_3) = {1},
        uargs(c_6) = {1}
      
      Following symbols are considered usable:
        {a__c#,a__g#,a__h#,mark#}
      TcT has computed the following interpretation:
         p(a__c) = [2]          
         p(a__g) = [8] x1 + [1] 
         p(a__h) = [8]          
            p(c) = [0]          
            p(d) = [5]          
            p(g) = [0]          
            p(h) = [0]          
         p(mark) = [8]          
        p(a__c#) = [0]          
        p(a__g#) = [4] x1 + [10]
        p(a__h#) = [2] x1 + [1] 
        p(mark#) = [0]          
          p(c_1) = [1]          
          p(c_2) = [1]          
          p(c_3) = [2] x1 + [0] 
          p(c_4) = [2]          
          p(c_5) = [0]          
          p(c_6) = [1] x1 + [0] 
          p(c_7) = [0]          
          p(c_8) = [8]          
          p(c_9) = [1] x1 + [0] 
         p(c_10) = [1] x1 + [8] 
      
      Following rules are strictly oriented:
      a__g#(X) = [4] X + [10] 
               > [4] X + [2]  
               = c_3(a__h#(X))
      
      
      Following rules are (at-least) weakly oriented:
      a__h#(d()) =  [11]           
                 >= [10]           
                 =  c_6(a__g#(c()))
      
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        a__g#(X) -> c_3(a__h#(X))
        a__h#(d()) -> c_6(a__g#(c()))
      Weak TRS Rules:
        
      Signature:
        {a__c/0,a__g/1,a__h/1,mark/1,a__c#/0,a__g#/1,a__h#/1,mark#/1} / {c/0,d/0,g/1,h/1,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1,c_8/0,c_9/1,c_10/1}
      Obligation:
        Innermost
        basic terms: {a__c#,a__g#,a__h#,mark#}/{c,d,g,h}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).