*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        active(cons(X1,X2)) -> cons(active(X1),X2)
        active(head(X)) -> head(active(X))
        active(head(cons(X,XS))) -> mark(X)
        active(incr(X)) -> incr(active(X))
        active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS)))
        active(nats()) -> mark(cons(0(),incr(nats())))
        active(odds()) -> mark(incr(pairs()))
        active(pairs()) -> mark(cons(0(),incr(odds())))
        active(s(X)) -> s(active(X))
        active(tail(X)) -> tail(active(X))
        active(tail(cons(X,XS))) -> mark(XS)
        cons(mark(X1),X2) -> mark(cons(X1,X2))
        cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
        head(mark(X)) -> mark(head(X))
        head(ok(X)) -> ok(head(X))
        incr(mark(X)) -> mark(incr(X))
        incr(ok(X)) -> ok(incr(X))
        proper(0()) -> ok(0())
        proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
        proper(head(X)) -> head(proper(X))
        proper(incr(X)) -> incr(proper(X))
        proper(nats()) -> ok(nats())
        proper(odds()) -> ok(odds())
        proper(pairs()) -> ok(pairs())
        proper(s(X)) -> s(proper(X))
        proper(tail(X)) -> tail(proper(X))
        s(mark(X)) -> mark(s(X))
        s(ok(X)) -> ok(s(X))
        tail(mark(X)) -> mark(tail(X))
        tail(ok(X)) -> ok(tail(X))
        top(mark(X)) -> top(proper(X))
        top(ok(X)) -> top(active(X))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {active/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,odds/0,ok/1,pairs/0}
      Obligation:
        Full
        basic terms: {active,cons,head,incr,proper,s,tail,top}/{0,mark,nats,odds,ok,pairs}
    Applied Processor:
      Bounds {initialAutomaton = perSymbol, enrichment = match}
    Proof:
      The problem is match-bounded by 9.
      The enriched problem is compatible with follwoing automaton.
        0_0() -> 1
        0_1() -> 16
        0_2() -> 28
        0_3() -> 47
        0_4() -> 56
        0_5() -> 75
        0_6() -> 100
        active_0(1) -> 2
        active_0(6) -> 2
        active_0(7) -> 2
        active_0(8) -> 2
        active_0(9) -> 2
        active_0(10) -> 2
        active_1(1) -> 25
        active_1(6) -> 25
        active_1(7) -> 25
        active_1(8) -> 25
        active_1(9) -> 25
        active_1(10) -> 25
        active_2(16) -> 26
        active_2(18) -> 26
        active_2(19) -> 26
        active_3(38) -> 36
        active_4(28) -> 53
        active_4(31) -> 45
        active_4(51) -> 52
        active_5(44) -> 54
        active_5(47) -> 61
        active_5(74) -> 60
        active_6(56) -> 82
        active_6(72) -> 65
        active_6(80) -> 81
        active_7(75) -> 92
        active_7(79) -> 83
        active_7(105) -> 91
        active_8(99) -> 107
        active_8(100) -> 111
        active_8(108) -> 109
        active_9(103) -> 110
        cons_0(1,1) -> 3
        cons_0(1,6) -> 3
        cons_0(1,7) -> 3
        cons_0(1,8) -> 3
        cons_0(1,9) -> 3
        cons_0(1,10) -> 3
        cons_0(6,1) -> 3
        cons_0(6,6) -> 3
        cons_0(6,7) -> 3
        cons_0(6,8) -> 3
        cons_0(6,9) -> 3
        cons_0(6,10) -> 3
        cons_0(7,1) -> 3
        cons_0(7,6) -> 3
        cons_0(7,7) -> 3
        cons_0(7,8) -> 3
        cons_0(7,9) -> 3
        cons_0(7,10) -> 3
        cons_0(8,1) -> 3
        cons_0(8,6) -> 3
        cons_0(8,7) -> 3
        cons_0(8,8) -> 3
        cons_0(8,9) -> 3
        cons_0(8,10) -> 3
        cons_0(9,1) -> 3
        cons_0(9,6) -> 3
        cons_0(9,7) -> 3
        cons_0(9,8) -> 3
        cons_0(9,9) -> 3
        cons_0(9,10) -> 3
        cons_0(10,1) -> 3
        cons_0(10,6) -> 3
        cons_0(10,7) -> 3
        cons_0(10,8) -> 3
        cons_0(10,9) -> 3
        cons_0(10,10) -> 3
        cons_1(1,1) -> 20
        cons_1(1,6) -> 20
        cons_1(1,7) -> 20
        cons_1(1,8) -> 20
        cons_1(1,9) -> 20
        cons_1(1,10) -> 20
        cons_1(6,1) -> 20
        cons_1(6,6) -> 20
        cons_1(6,7) -> 20
        cons_1(6,8) -> 20
        cons_1(6,9) -> 20
        cons_1(6,10) -> 20
        cons_1(7,1) -> 20
        cons_1(7,6) -> 20
        cons_1(7,7) -> 20
        cons_1(7,8) -> 20
        cons_1(7,9) -> 20
        cons_1(7,10) -> 20
        cons_1(8,1) -> 20
        cons_1(8,6) -> 20
        cons_1(8,7) -> 20
        cons_1(8,8) -> 20
        cons_1(8,9) -> 20
        cons_1(8,10) -> 20
        cons_1(9,1) -> 20
        cons_1(9,6) -> 20
        cons_1(9,7) -> 20
        cons_1(9,8) -> 20
        cons_1(9,9) -> 20
        cons_1(9,10) -> 20
        cons_1(10,1) -> 20
        cons_1(10,6) -> 20
        cons_1(10,7) -> 20
        cons_1(10,8) -> 20
        cons_1(10,9) -> 20
        cons_1(10,10) -> 20
        cons_1(16,17) -> 15
        cons_2(28,29) -> 27
        cons_2(32,33) -> 26
        cons_3(28,37) -> 38
        cons_3(39,40) -> 36
        cons_3(47,48) -> 46
        cons_4(47,50) -> 51
        cons_4(53,37) -> 36
        cons_4(56,57) -> 55
        cons_4(62,63) -> 54
        cons_5(56,67) -> 72
        cons_5(61,50) -> 52
        cons_5(68,69) -> 65
        cons_6(75,73) -> 79
        cons_6(77,78) -> 76
        cons_6(82,67) -> 65
        cons_7(85,86) -> 84
        cons_7(87,88) -> 81
        cons_7(92,73) -> 83
        cons_7(99,86) -> 105
        cons_8(93,94) -> 91
        cons_8(103,106) -> 108
        cons_8(107,86) -> 91
        cons_9(110,106) -> 109
        head_0(1) -> 4
        head_0(6) -> 4
        head_0(7) -> 4
        head_0(8) -> 4
        head_0(9) -> 4
        head_0(10) -> 4
        head_1(1) -> 21
        head_1(6) -> 21
        head_1(7) -> 21
        head_1(8) -> 21
        head_1(9) -> 21
        head_1(10) -> 21
        incr_0(1) -> 5
        incr_0(6) -> 5
        incr_0(7) -> 5
        incr_0(8) -> 5
        incr_0(9) -> 5
        incr_0(10) -> 5
        incr_1(1) -> 22
        incr_1(6) -> 22
        incr_1(7) -> 22
        incr_1(8) -> 22
        incr_1(9) -> 22
        incr_1(10) -> 22
        incr_1(18) -> 17
        incr_1(19) -> 15
        incr_2(30) -> 29
        incr_2(31) -> 27
        incr_2(34) -> 33
        incr_2(35) -> 26
        incr_3(30) -> 37
        incr_3(31) -> 38
        incr_3(41) -> 40
        incr_3(42) -> 36
        incr_3(43) -> 48
        incr_4(43) -> 50
        incr_4(44) -> 51
        incr_4(45) -> 36
        incr_4(46) -> 49
        incr_4(58) -> 57
        incr_4(64) -> 63
        incr_5(54) -> 52
        incr_5(55) -> 59
        incr_5(58) -> 67
        incr_5(66) -> 67
        incr_5(70) -> 69
        incr_6(65) -> 60
        incr_6(67) -> 78
        incr_6(71) -> 73
        incr_6(72) -> 74
        incr_6(95) -> 89
        incr_6(97) -> 73
        incr_7(73) -> 86
        incr_7(79) -> 80
        incr_7(83) -> 81
        incr_7(89) -> 88
        incr_7(101) -> 96
        incr_7(102) -> 104
        incr_8(96) -> 94
        incr_8(104) -> 106
        mark_0(1) -> 6
        mark_0(6) -> 6
        mark_0(7) -> 6
        mark_0(8) -> 6
        mark_0(9) -> 6
        mark_0(10) -> 6
        mark_1(15) -> 2
        mark_1(15) -> 25
        mark_1(20) -> 3
        mark_1(20) -> 20
        mark_1(21) -> 4
        mark_1(21) -> 21
        mark_1(22) -> 5
        mark_1(22) -> 22
        mark_1(23) -> 12
        mark_1(23) -> 23
        mark_1(24) -> 13
        mark_1(24) -> 24
        mark_2(27) -> 26
        mark_3(46) -> 45
        mark_4(49) -> 36
        mark_4(55) -> 54
        mark_5(59) -> 52
        mark_6(76) -> 60
        mark_7(84) -> 81
        nats_0() -> 7
        nats_1() -> 18
        nats_2() -> 30
        nats_3() -> 43
        nats_4() -> 66
        nats_5() -> 97
        nats_6() -> 102
        odds_0() -> 8
        odds_1() -> 18
        odds_2() -> 30
        odds_3() -> 43
        odds_4() -> 58
        odds_5() -> 71
        odds_6() -> 102
        ok_0(1) -> 9
        ok_0(6) -> 9
        ok_0(7) -> 9
        ok_0(8) -> 9
        ok_0(9) -> 9
        ok_0(10) -> 9
        ok_1(16) -> 11
        ok_1(16) -> 25
        ok_1(18) -> 11
        ok_1(18) -> 25
        ok_1(19) -> 11
        ok_1(19) -> 25
        ok_1(20) -> 3
        ok_1(20) -> 20
        ok_1(21) -> 4
        ok_1(21) -> 21
        ok_1(22) -> 5
        ok_1(22) -> 22
        ok_1(23) -> 12
        ok_1(23) -> 23
        ok_1(24) -> 13
        ok_1(24) -> 24
        ok_2(28) -> 32
        ok_2(30) -> 34
        ok_2(31) -> 35
        ok_3(37) -> 33
        ok_3(38) -> 26
        ok_3(43) -> 41
        ok_3(44) -> 42
        ok_3(47) -> 39
        ok_4(50) -> 40
        ok_4(51) -> 36
        ok_4(56) -> 62
        ok_4(58) -> 64
        ok_4(66) -> 64
        ok_5(67) -> 63
        ok_5(71) -> 70
        ok_5(71) -> 95
        ok_5(72) -> 54
        ok_5(75) -> 68
        ok_5(75) -> 90
        ok_5(97) -> 95
        ok_6(73) -> 69
        ok_6(73) -> 89
        ok_6(74) -> 52
        ok_6(79) -> 65
        ok_6(99) -> 87
        ok_6(100) -> 98
        ok_6(102) -> 101
        ok_7(80) -> 60
        ok_7(86) -> 88
        ok_7(103) -> 93
        ok_7(104) -> 96
        ok_7(105) -> 81
        ok_8(106) -> 94
        ok_8(108) -> 91
        pairs_0() -> 10
        pairs_1() -> 19
        pairs_2() -> 31
        pairs_3() -> 44
        proper_0(1) -> 11
        proper_0(6) -> 11
        proper_0(7) -> 11
        proper_0(8) -> 11
        proper_0(9) -> 11
        proper_0(10) -> 11
        proper_1(1) -> 25
        proper_1(6) -> 25
        proper_1(7) -> 25
        proper_1(8) -> 25
        proper_1(9) -> 25
        proper_1(10) -> 25
        proper_2(15) -> 26
        proper_2(16) -> 32
        proper_2(17) -> 33
        proper_2(18) -> 34
        proper_2(19) -> 35
        proper_3(27) -> 36
        proper_3(28) -> 39
        proper_3(29) -> 40
        proper_3(30) -> 41
        proper_3(31) -> 42
        proper_4(43) -> 64
        proper_4(47) -> 62
        proper_4(48) -> 63
        proper_4(49) -> 52
        proper_5(46) -> 54
        proper_5(56) -> 68
        proper_5(57) -> 69
        proper_5(58) -> 70
        proper_5(59) -> 60
        proper_6(55) -> 65
        proper_6(58) -> 95
        proper_6(66) -> 95
        proper_6(76) -> 81
        proper_7(56) -> 90
        proper_7(67) -> 89
        proper_7(71) -> 101
        proper_7(77) -> 87
        proper_7(78) -> 88
        proper_7(84) -> 91
        proper_7(97) -> 101
        proper_8(73) -> 96
        proper_8(75) -> 98
        proper_8(85) -> 93
        proper_8(86) -> 94
        s_0(1) -> 12
        s_0(6) -> 12
        s_0(7) -> 12
        s_0(8) -> 12
        s_0(9) -> 12
        s_0(10) -> 12
        s_1(1) -> 23
        s_1(6) -> 23
        s_1(7) -> 23
        s_1(8) -> 23
        s_1(9) -> 23
        s_1(10) -> 23
        s_6(56) -> 77
        s_6(75) -> 99
        s_7(75) -> 85
        s_7(90) -> 87
        s_7(92) -> 107
        s_7(100) -> 103
        s_8(98) -> 93
        s_8(111) -> 110
        tail_0(1) -> 13
        tail_0(6) -> 13
        tail_0(7) -> 13
        tail_0(8) -> 13
        tail_0(9) -> 13
        tail_0(10) -> 13
        tail_1(1) -> 24
        tail_1(6) -> 24
        tail_1(7) -> 24
        tail_1(8) -> 24
        tail_1(9) -> 24
        tail_1(10) -> 24
        top_0(1) -> 14
        top_0(6) -> 14
        top_0(7) -> 14
        top_0(8) -> 14
        top_0(9) -> 14
        top_0(10) -> 14
        top_1(25) -> 14
        top_2(26) -> 14
        top_3(36) -> 14
        top_4(52) -> 14
        top_5(60) -> 14
        top_6(81) -> 14
        top_7(91) -> 14
        top_8(109) -> 14
*** 1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        active(cons(X1,X2)) -> cons(active(X1),X2)
        active(head(X)) -> head(active(X))
        active(head(cons(X,XS))) -> mark(X)
        active(incr(X)) -> incr(active(X))
        active(incr(cons(X,XS))) -> mark(cons(s(X),incr(XS)))
        active(nats()) -> mark(cons(0(),incr(nats())))
        active(odds()) -> mark(incr(pairs()))
        active(pairs()) -> mark(cons(0(),incr(odds())))
        active(s(X)) -> s(active(X))
        active(tail(X)) -> tail(active(X))
        active(tail(cons(X,XS))) -> mark(XS)
        cons(mark(X1),X2) -> mark(cons(X1,X2))
        cons(ok(X1),ok(X2)) -> ok(cons(X1,X2))
        head(mark(X)) -> mark(head(X))
        head(ok(X)) -> ok(head(X))
        incr(mark(X)) -> mark(incr(X))
        incr(ok(X)) -> ok(incr(X))
        proper(0()) -> ok(0())
        proper(cons(X1,X2)) -> cons(proper(X1),proper(X2))
        proper(head(X)) -> head(proper(X))
        proper(incr(X)) -> incr(proper(X))
        proper(nats()) -> ok(nats())
        proper(odds()) -> ok(odds())
        proper(pairs()) -> ok(pairs())
        proper(s(X)) -> s(proper(X))
        proper(tail(X)) -> tail(proper(X))
        s(mark(X)) -> mark(s(X))
        s(ok(X)) -> ok(s(X))
        tail(mark(X)) -> mark(tail(X))
        tail(ok(X)) -> ok(tail(X))
        top(mark(X)) -> top(proper(X))
        top(ok(X)) -> top(active(X))
      Signature:
        {active/1,cons/2,head/1,incr/1,proper/1,s/1,tail/1,top/1} / {0/0,mark/1,nats/0,odds/0,ok/1,pairs/0}
      Obligation:
        Full
        basic terms: {active,cons,head,incr,proper,s,tail,top}/{0,mark,nats,odds,ok,pairs}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).