*** 1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        sel(0(),cons(X,Z)) -> X
        sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1}
      Obligation:
        Full
        basic terms: {activate,first,from,sel}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      DependencyPairs {dpKind_ = DT}
    Proof:
      We add the following weak dependency pairs:
      
      Strict DPs
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        sel(0(),cons(X,Z)) -> X
        sel(s(X),cons(Y,Z)) -> sel(X,activate(Z))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
*** 1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {5}
      by application of
        Pre({5}) = {1,2,4,6,7,8,9}.
      Here rules are labelled as follows:
        1:  activate#(X) -> c_1(X)                     
        2:  activate#(n__first(X1,X2)) ->              
              c_2(first#(X1,X2))                       
        3:  activate#(n__from(X)) ->                   
              c_3(from#(X))                            
        4:  first#(X1,X2) -> c_4(X1,X2)                
        5:  first#(0(),Z) -> c_5()                     
        6:  first#(s(X),cons(Y,Z)) -> c_6(Y            
                                         ,X            
                                         ,activate#(Z))
        7:  from#(X) -> c_7(X,X)                       
        8:  from#(X) -> c_8(X)                         
        9:  sel#(0(),cons(X,Z)) -> c_9(X)              
        10: sel#(s(X),cons(Y,Z)) ->                    
              c_10(sel#(X,activate(Z)))                
*** 1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        first#(0(),Z) -> c_5()
      Weak TRS Rules:
        
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(activate) = {1},
          uargs(cons) = {2},
          uargs(first) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {3},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [0]         
               p(cons) = [1] x2 + [3]         
              p(first) = [1] x1 + [1] x2 + [0]
               p(from) = [1] x1 + [0]         
           p(n__first) = [1] x1 + [1] x2 + [7]
            p(n__from) = [1] x1 + [0]         
                p(nil) = [0]                  
                  p(s) = [1] x1 + [0]         
                p(sel) = [0]                  
          p(activate#) = [0]                  
             p(first#) = [0]                  
              p(from#) = [0]                  
               p(sel#) = [1] x2 + [0]         
                p(c_1) = [0]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [0]                  
                p(c_5) = [0]                  
                p(c_6) = [1] x3 + [0]         
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [0]                  
               p(c_10) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
              sel#(0(),cons(X,Z)) = [1] Z + [3]              
                                  > [0]                      
                                  = c_9(X)                   
        
             sel#(s(X),cons(Y,Z)) = [1] Z + [3]              
                                  > [1] Z + [0]              
                                  = c_10(sel#(X,activate(Z)))
        
        activate(n__first(X1,X2)) = [1] X1 + [1] X2 + [7]    
                                  > [1] X1 + [1] X2 + [0]    
                                  = first(X1,X2)             
        
        
        Following rules are (at-least) weakly oriented:
                      activate#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_1(X)                         
        
        activate#(n__first(X1,X2)) =  [0]                            
                                   >= [0]                            
                                   =  c_2(first#(X1,X2))             
        
             activate#(n__from(X)) =  [0]                            
                                   >= [0]                            
                                   =  c_3(from#(X))                  
        
                     first#(X1,X2) =  [0]                            
                                   >= [0]                            
                                   =  c_4(X1,X2)                     
        
                     first#(0(),Z) =  [0]                            
                                   >= [0]                            
                                   =  c_5()                          
        
            first#(s(X),cons(Y,Z)) =  [0]                            
                                   >= [0]                            
                                   =  c_6(Y,X,activate#(Z))          
        
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_7(X,X)                       
        
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_8(X)                         
        
                       activate(X) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  X                              
        
              activate(n__from(X)) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  from(X)                        
        
                      first(X1,X2) =  [1] X1 + [1] X2 + [0]          
                                   >= [1] X1 + [1] X2 + [7]          
                                   =  n__first(X1,X2)                
        
                      first(0(),Z) =  [1] Z + [0]                    
                                   >= [0]                            
                                   =  nil()                          
        
             first(s(X),cons(Y,Z)) =  [1] X + [1] Z + [3]            
                                   >= [1] X + [1] Z + [10]           
                                   =  cons(Y,n__first(X,activate(Z)))
        
                           from(X) =  [1] X + [0]                    
                                   >= [1] X + [3]                    
                                   =  cons(X,n__from(s(X)))          
        
                           from(X) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  n__from(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
      Strict TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        first#(0(),Z) -> c_5()
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(n__first(X1,X2)) -> first(X1,X2)
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(activate) = {1},
          uargs(cons) = {2},
          uargs(first) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {3},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [0]         
               p(cons) = [1] x2 + [0]         
              p(first) = [1] x1 + [1] x2 + [3]
               p(from) = [1] x1 + [0]         
           p(n__first) = [1] x1 + [1] x2 + [3]
            p(n__from) = [1] x1 + [0]         
                p(nil) = [0]                  
                  p(s) = [1] x1 + [0]         
                p(sel) = [0]                  
          p(activate#) = [0]                  
             p(first#) = [0]                  
              p(from#) = [1]                  
               p(sel#) = [1] x2 + [0]         
                p(c_1) = [0]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [0]                  
                p(c_5) = [0]                  
                p(c_6) = [1] x3 + [0]         
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [0]                  
               p(c_10) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
            from#(X) = [1]        
                     > [0]        
                     = c_7(X,X)   
        
            from#(X) = [1]        
                     > [0]        
                     = c_8(X)     
        
        first(0(),Z) = [1] Z + [3]
                     > [0]        
                     = nil()      
        
        
        Following rules are (at-least) weakly oriented:
                      activate#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_1(X)                         
        
        activate#(n__first(X1,X2)) =  [0]                            
                                   >= [0]                            
                                   =  c_2(first#(X1,X2))             
        
             activate#(n__from(X)) =  [0]                            
                                   >= [1]                            
                                   =  c_3(from#(X))                  
        
                     first#(X1,X2) =  [0]                            
                                   >= [0]                            
                                   =  c_4(X1,X2)                     
        
                     first#(0(),Z) =  [0]                            
                                   >= [0]                            
                                   =  c_5()                          
        
            first#(s(X),cons(Y,Z)) =  [0]                            
                                   >= [0]                            
                                   =  c_6(Y,X,activate#(Z))          
        
               sel#(0(),cons(X,Z)) =  [1] Z + [0]                    
                                   >= [0]                            
                                   =  c_9(X)                         
        
              sel#(s(X),cons(Y,Z)) =  [1] Z + [0]                    
                                   >= [1] Z + [0]                    
                                   =  c_10(sel#(X,activate(Z)))      
        
                       activate(X) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  X                              
        
         activate(n__first(X1,X2)) =  [1] X1 + [1] X2 + [3]          
                                   >= [1] X1 + [1] X2 + [3]          
                                   =  first(X1,X2)                   
        
              activate(n__from(X)) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  from(X)                        
        
                      first(X1,X2) =  [1] X1 + [1] X2 + [3]          
                                   >= [1] X1 + [1] X2 + [3]          
                                   =  n__first(X1,X2)                
        
             first(s(X),cons(Y,Z)) =  [1] X + [1] Z + [3]            
                                   >= [1] X + [1] Z + [3]            
                                   =  cons(Y,n__first(X,activate(Z)))
        
                           from(X) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  cons(X,n__from(s(X)))          
        
                           from(X) =  [1] X + [0]                    
                                   >= [1] X + [0]                    
                                   =  n__from(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
      Strict TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        first#(0(),Z) -> c_5()
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(n__first(X1,X2)) -> first(X1,X2)
        first(0(),Z) -> nil()
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(activate) = {1},
          uargs(cons) = {2},
          uargs(first) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {3},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [0]         
               p(cons) = [1] x2 + [0]         
              p(first) = [1] x1 + [1] x2 + [0]
               p(from) = [0]                  
           p(n__first) = [1] x1 + [1] x2 + [0]
            p(n__from) = [0]                  
                p(nil) = [0]                  
                  p(s) = [1] x1 + [1]         
                p(sel) = [0]                  
          p(activate#) = [1] x1 + [0]         
             p(first#) = [1] x1 + [1] x2 + [0]
              p(from#) = [0]                  
               p(sel#) = [1] x2 + [0]         
                p(c_1) = [1] x1 + [0]         
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [1] x1 + [1] x2 + [0]
                p(c_5) = [0]                  
                p(c_6) = [1] x2 + [1] x3 + [0]
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [0]                  
               p(c_10) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        first#(s(X),cons(Y,Z)) = [1] X + [1] Z + [1]            
                               > [1] X + [1] Z + [0]            
                               = c_6(Y,X,activate#(Z))          
        
         first(s(X),cons(Y,Z)) = [1] X + [1] Z + [1]            
                               > [1] X + [1] Z + [0]            
                               = cons(Y,n__first(X,activate(Z)))
        
        
        Following rules are (at-least) weakly oriented:
                      activate#(X) =  [1] X + [0]              
                                   >= [1] X + [0]              
                                   =  c_1(X)                   
        
        activate#(n__first(X1,X2)) =  [1] X1 + [1] X2 + [0]    
                                   >= [1] X1 + [1] X2 + [0]    
                                   =  c_2(first#(X1,X2))       
        
             activate#(n__from(X)) =  [0]                      
                                   >= [0]                      
                                   =  c_3(from#(X))            
        
                     first#(X1,X2) =  [1] X1 + [1] X2 + [0]    
                                   >= [1] X1 + [1] X2 + [0]    
                                   =  c_4(X1,X2)               
        
                     first#(0(),Z) =  [1] Z + [0]              
                                   >= [0]                      
                                   =  c_5()                    
        
                          from#(X) =  [0]                      
                                   >= [0]                      
                                   =  c_7(X,X)                 
        
                          from#(X) =  [0]                      
                                   >= [0]                      
                                   =  c_8(X)                   
        
               sel#(0(),cons(X,Z)) =  [1] Z + [0]              
                                   >= [0]                      
                                   =  c_9(X)                   
        
              sel#(s(X),cons(Y,Z)) =  [1] Z + [0]              
                                   >= [1] Z + [0]              
                                   =  c_10(sel#(X,activate(Z)))
        
                       activate(X) =  [1] X + [0]              
                                   >= [1] X + [0]              
                                   =  X                        
        
         activate(n__first(X1,X2)) =  [1] X1 + [1] X2 + [0]    
                                   >= [1] X1 + [1] X2 + [0]    
                                   =  first(X1,X2)             
        
              activate(n__from(X)) =  [0]                      
                                   >= [0]                      
                                   =  from(X)                  
        
                      first(X1,X2) =  [1] X1 + [1] X2 + [0]    
                                   >= [1] X1 + [1] X2 + [0]    
                                   =  n__first(X1,X2)          
        
                      first(0(),Z) =  [1] Z + [0]              
                                   >= [0]                      
                                   =  nil()                    
        
                           from(X) =  [0]                      
                                   >= [0]                      
                                   =  cons(X,n__from(s(X)))    
        
                           from(X) =  [0]                      
                                   >= [0]                      
                                   =  n__from(X)               
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
      Strict TRS Rules:
        activate(X) -> X
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(n__first(X1,X2)) -> first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(activate) = {1},
          uargs(cons) = {2},
          uargs(first) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {3},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [1]         
               p(cons) = [1] x2 + [3]         
              p(first) = [1] x2 + [2]         
               p(from) = [1] x1 + [0]         
           p(n__first) = [1] x2 + [1]         
            p(n__from) = [1] x1 + [7]         
                p(nil) = [1]                  
                  p(s) = [1] x1 + [1]         
                p(sel) = [2] x1 + [2]         
          p(activate#) = [1]                  
             p(first#) = [5]                  
              p(from#) = [0]                  
               p(sel#) = [2] x1 + [1] x2 + [6]
                p(c_1) = [0]                  
                p(c_2) = [1] x1 + [1]         
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [0]                  
                p(c_5) = [5]                  
                p(c_6) = [1] x3 + [4]         
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [0]                  
               p(c_10) = [1] x1 + [4]         
        
        Following rules are strictly oriented:
                 activate#(X) = [1]            
                              > [0]            
                              = c_1(X)         
        
        activate#(n__from(X)) = [1]            
                              > [0]            
                              = c_3(from#(X))  
        
                first#(X1,X2) = [5]            
                              > [0]            
                              = c_4(X1,X2)     
        
                  activate(X) = [1] X + [1]    
                              > [1] X + [0]    
                              = X              
        
         activate(n__from(X)) = [1] X + [8]    
                              > [1] X + [0]    
                              = from(X)        
        
                 first(X1,X2) = [1] X2 + [2]   
                              > [1] X2 + [1]   
                              = n__first(X1,X2)
        
        
        Following rules are (at-least) weakly oriented:
        activate#(n__first(X1,X2)) =  [1]                            
                                   >= [6]                            
                                   =  c_2(first#(X1,X2))             
        
                     first#(0(),Z) =  [5]                            
                                   >= [5]                            
                                   =  c_5()                          
        
            first#(s(X),cons(Y,Z)) =  [5]                            
                                   >= [5]                            
                                   =  c_6(Y,X,activate#(Z))          
        
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_7(X,X)                       
        
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_8(X)                         
        
               sel#(0(),cons(X,Z)) =  [1] Z + [9]                    
                                   >= [0]                            
                                   =  c_9(X)                         
        
              sel#(s(X),cons(Y,Z)) =  [2] X + [1] Z + [11]           
                                   >= [2] X + [1] Z + [11]           
                                   =  c_10(sel#(X,activate(Z)))      
        
         activate(n__first(X1,X2)) =  [1] X2 + [2]                   
                                   >= [1] X2 + [2]                   
                                   =  first(X1,X2)                   
        
                      first(0(),Z) =  [1] Z + [2]                    
                                   >= [1]                            
                                   =  nil()                          
        
             first(s(X),cons(Y,Z)) =  [1] Z + [5]                    
                                   >= [1] Z + [5]                    
                                   =  cons(Y,n__first(X,activate(Z)))
        
                           from(X) =  [1] X + [0]                    
                                   >= [1] X + [11]                   
                                   =  cons(X,n__from(s(X)))          
        
                           from(X) =  [1] X + [0]                    
                                   >= [1] X + [7]                    
                                   =  n__from(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
      Strict TRS Rules:
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(activate) = {1},
          uargs(cons) = {2},
          uargs(first) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {3},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]         
           p(activate) = [1] x1 + [0]
               p(cons) = [1] x2 + [4]
              p(first) = [1] x2 + [5]
               p(from) = [0]         
           p(n__first) = [1] x2 + [5]
            p(n__from) = [0]         
                p(nil) = [5]         
                  p(s) = [1] x1 + [0]
                p(sel) = [0]         
          p(activate#) = [1] x1 + [2]
             p(first#) = [1] x2 + [0]
              p(from#) = [0]         
               p(sel#) = [1] x2 + [0]
                p(c_1) = [1] x1 + [2]
                p(c_2) = [1] x1 + [0]
                p(c_3) = [1] x1 + [2]
                p(c_4) = [1] x2 + [0]
                p(c_5) = [0]         
                p(c_6) = [1] x3 + [2]
                p(c_7) = [0]         
                p(c_8) = [0]         
                p(c_9) = [4]         
               p(c_10) = [1] x1 + [0]
        
        Following rules are strictly oriented:
        activate#(n__first(X1,X2)) = [1] X2 + [7]      
                                   > [1] X2 + [0]      
                                   = c_2(first#(X1,X2))
        
        
        Following rules are (at-least) weakly oriented:
                     activate#(X) =  [1] X + [2]                    
                                  >= [1] X + [2]                    
                                  =  c_1(X)                         
        
            activate#(n__from(X)) =  [2]                            
                                  >= [2]                            
                                  =  c_3(from#(X))                  
        
                    first#(X1,X2) =  [1] X2 + [0]                   
                                  >= [1] X2 + [0]                   
                                  =  c_4(X1,X2)                     
        
                    first#(0(),Z) =  [1] Z + [0]                    
                                  >= [0]                            
                                  =  c_5()                          
        
           first#(s(X),cons(Y,Z)) =  [1] Z + [4]                    
                                  >= [1] Z + [4]                    
                                  =  c_6(Y,X,activate#(Z))          
        
                         from#(X) =  [0]                            
                                  >= [0]                            
                                  =  c_7(X,X)                       
        
                         from#(X) =  [0]                            
                                  >= [0]                            
                                  =  c_8(X)                         
        
              sel#(0(),cons(X,Z)) =  [1] Z + [4]                    
                                  >= [4]                            
                                  =  c_9(X)                         
        
             sel#(s(X),cons(Y,Z)) =  [1] Z + [4]                    
                                  >= [1] Z + [0]                    
                                  =  c_10(sel#(X,activate(Z)))      
        
                      activate(X) =  [1] X + [0]                    
                                  >= [1] X + [0]                    
                                  =  X                              
        
        activate(n__first(X1,X2)) =  [1] X2 + [5]                   
                                  >= [1] X2 + [5]                   
                                  =  first(X1,X2)                   
        
             activate(n__from(X)) =  [0]                            
                                  >= [0]                            
                                  =  from(X)                        
        
                     first(X1,X2) =  [1] X2 + [5]                   
                                  >= [1] X2 + [5]                   
                                  =  n__first(X1,X2)                
        
                     first(0(),Z) =  [1] Z + [5]                    
                                  >= [5]                            
                                  =  nil()                          
        
            first(s(X),cons(Y,Z)) =  [1] Z + [9]                    
                                  >= [1] Z + [9]                    
                                  =  cons(Y,n__first(X,activate(Z)))
        
                          from(X) =  [0]                            
                                  >= [4]                            
                                  =  cons(X,n__from(s(X)))          
        
                          from(X) =  [0]                            
                                  >= [0]                            
                                  =  n__from(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Weak DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(activate) = {1},
          uargs(cons) = {2},
          uargs(first) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {3},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [1]         
               p(cons) = [1] x1 + [1] x2 + [1]
              p(first) = [1] x2 + [5]         
               p(from) = [1] x1 + [1]         
           p(n__first) = [1] x2 + [4]         
            p(n__from) = [1] x1 + [0]         
                p(nil) = [0]                  
                  p(s) = [6]                  
                p(sel) = [1] x2 + [0]         
          p(activate#) = [5]                  
             p(first#) = [5]                  
              p(from#) = [1]                  
               p(sel#) = [1] x2 + [5]         
                p(c_1) = [0]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [0]                  
                p(c_5) = [0]                  
                p(c_6) = [1] x3 + [0]         
                p(c_7) = [1]                  
                p(c_8) = [1]                  
                p(c_9) = [6]                  
               p(c_10) = [1] x1 + [0]         
        
        Following rules are strictly oriented:
        from(X) = [1] X + [1]
                > [1] X + [0]
                = n__from(X) 
        
        
        Following rules are (at-least) weakly oriented:
                      activate#(X) =  [5]                            
                                   >= [0]                            
                                   =  c_1(X)                         
        
        activate#(n__first(X1,X2)) =  [5]                            
                                   >= [5]                            
                                   =  c_2(first#(X1,X2))             
        
             activate#(n__from(X)) =  [5]                            
                                   >= [1]                            
                                   =  c_3(from#(X))                  
        
                     first#(X1,X2) =  [5]                            
                                   >= [0]                            
                                   =  c_4(X1,X2)                     
        
                     first#(0(),Z) =  [5]                            
                                   >= [0]                            
                                   =  c_5()                          
        
            first#(s(X),cons(Y,Z)) =  [5]                            
                                   >= [5]                            
                                   =  c_6(Y,X,activate#(Z))          
        
                          from#(X) =  [1]                            
                                   >= [1]                            
                                   =  c_7(X,X)                       
        
                          from#(X) =  [1]                            
                                   >= [1]                            
                                   =  c_8(X)                         
        
               sel#(0(),cons(X,Z)) =  [1] X + [1] Z + [6]            
                                   >= [6]                            
                                   =  c_9(X)                         
        
              sel#(s(X),cons(Y,Z)) =  [1] Y + [1] Z + [6]            
                                   >= [1] Z + [6]                    
                                   =  c_10(sel#(X,activate(Z)))      
        
                       activate(X) =  [1] X + [1]                    
                                   >= [1] X + [0]                    
                                   =  X                              
        
         activate(n__first(X1,X2)) =  [1] X2 + [5]                   
                                   >= [1] X2 + [5]                   
                                   =  first(X1,X2)                   
        
              activate(n__from(X)) =  [1] X + [1]                    
                                   >= [1] X + [1]                    
                                   =  from(X)                        
        
                      first(X1,X2) =  [1] X2 + [5]                   
                                   >= [1] X2 + [4]                   
                                   =  n__first(X1,X2)                
        
                      first(0(),Z) =  [1] Z + [5]                    
                                   >= [0]                            
                                   =  nil()                          
        
             first(s(X),cons(Y,Z)) =  [1] Y + [1] Z + [6]            
                                   >= [1] Y + [1] Z + [6]            
                                   =  cons(Y,n__first(X,activate(Z)))
        
                           from(X) =  [1] X + [1]                    
                                   >= [1] X + [7]                    
                                   =  cons(X,n__from(s(X)))          
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(n^1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        from(X) -> cons(X,n__from(s(X)))
      Weak DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> n__from(X)
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      WeightGap {wgDimension = 1, wgDegree = 0, wgKind = Algebraic, wgUArgs = UArgs, wgOn = WgOnAny}
    Proof:
      The weightgap principle applies using the following nonconstant growth matrix-interpretation:
        We apply a matrix interpretation of kind constructor based matrix interpretation:
        The following argument positions are considered usable:
          uargs(activate) = {1},
          uargs(cons) = {2},
          uargs(first) = {2},
          uargs(n__first) = {2},
          uargs(sel#) = {2},
          uargs(c_2) = {1},
          uargs(c_3) = {1},
          uargs(c_6) = {3},
          uargs(c_10) = {1}
        
        Following symbols are considered usable:
          {}
        TcT has computed the following interpretation:
                  p(0) = [0]                  
           p(activate) = [1] x1 + [3]         
               p(cons) = [1] x2 + [2]         
              p(first) = [1] x1 + [1] x2 + [4]
               p(from) = [3]                  
           p(n__first) = [1] x1 + [1] x2 + [4]
            p(n__from) = [0]                  
                p(nil) = [0]                  
                  p(s) = [1] x1 + [4]         
                p(sel) = [0]                  
          p(activate#) = [0]                  
             p(first#) = [0]                  
              p(from#) = [0]                  
               p(sel#) = [3] x1 + [1] x2 + [0]
                p(c_1) = [0]                  
                p(c_2) = [1] x1 + [0]         
                p(c_3) = [1] x1 + [0]         
                p(c_4) = [0]                  
                p(c_5) = [0]                  
                p(c_6) = [1] x3 + [0]         
                p(c_7) = [0]                  
                p(c_8) = [0]                  
                p(c_9) = [0]                  
               p(c_10) = [1] x1 + [2]         
        
        Following rules are strictly oriented:
        from(X) = [3]                  
                > [2]                  
                = cons(X,n__from(s(X)))
        
        
        Following rules are (at-least) weakly oriented:
                      activate#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_1(X)                         
        
        activate#(n__first(X1,X2)) =  [0]                            
                                   >= [0]                            
                                   =  c_2(first#(X1,X2))             
        
             activate#(n__from(X)) =  [0]                            
                                   >= [0]                            
                                   =  c_3(from#(X))                  
        
                     first#(X1,X2) =  [0]                            
                                   >= [0]                            
                                   =  c_4(X1,X2)                     
        
                     first#(0(),Z) =  [0]                            
                                   >= [0]                            
                                   =  c_5()                          
        
            first#(s(X),cons(Y,Z)) =  [0]                            
                                   >= [0]                            
                                   =  c_6(Y,X,activate#(Z))          
        
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_7(X,X)                       
        
                          from#(X) =  [0]                            
                                   >= [0]                            
                                   =  c_8(X)                         
        
               sel#(0(),cons(X,Z)) =  [1] Z + [2]                    
                                   >= [0]                            
                                   =  c_9(X)                         
        
              sel#(s(X),cons(Y,Z)) =  [3] X + [1] Z + [14]           
                                   >= [3] X + [1] Z + [5]            
                                   =  c_10(sel#(X,activate(Z)))      
        
                       activate(X) =  [1] X + [3]                    
                                   >= [1] X + [0]                    
                                   =  X                              
        
         activate(n__first(X1,X2)) =  [1] X1 + [1] X2 + [7]          
                                   >= [1] X1 + [1] X2 + [4]          
                                   =  first(X1,X2)                   
        
              activate(n__from(X)) =  [3]                            
                                   >= [3]                            
                                   =  from(X)                        
        
                      first(X1,X2) =  [1] X1 + [1] X2 + [4]          
                                   >= [1] X1 + [1] X2 + [4]          
                                   =  n__first(X1,X2)                
        
                      first(0(),Z) =  [1] Z + [4]                    
                                   >= [0]                            
                                   =  nil()                          
        
             first(s(X),cons(Y,Z)) =  [1] X + [1] Z + [10]           
                                   >= [1] X + [1] Z + [9]            
                                   =  cons(Y,n__first(X,activate(Z)))
        
                           from(X) =  [3]                            
                                   >= [0]                            
                                   =  n__from(X)                     
        
      Further, it can be verified that all rules not oriented are covered by the weightgap condition.
*** 1.1.1.1.1.1.1.1.1.1.1 Progress [(O(1),O(1))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        
      Weak DP Rules:
        activate#(X) -> c_1(X)
        activate#(n__first(X1,X2)) -> c_2(first#(X1,X2))
        activate#(n__from(X)) -> c_3(from#(X))
        first#(X1,X2) -> c_4(X1,X2)
        first#(0(),Z) -> c_5()
        first#(s(X),cons(Y,Z)) -> c_6(Y,X,activate#(Z))
        from#(X) -> c_7(X,X)
        from#(X) -> c_8(X)
        sel#(0(),cons(X,Z)) -> c_9(X)
        sel#(s(X),cons(Y,Z)) -> c_10(sel#(X,activate(Z)))
      Weak TRS Rules:
        activate(X) -> X
        activate(n__first(X1,X2)) -> first(X1,X2)
        activate(n__from(X)) -> from(X)
        first(X1,X2) -> n__first(X1,X2)
        first(0(),Z) -> nil()
        first(s(X),cons(Y,Z)) -> cons(Y,n__first(X,activate(Z)))
        from(X) -> cons(X,n__from(s(X)))
        from(X) -> n__from(X)
      Signature:
        {activate/1,first/2,from/1,sel/2,activate#/1,first#/2,from#/1,sel#/2} / {0/0,cons/2,n__first/2,n__from/1,nil/0,s/1,c_1/1,c_2/1,c_3/1,c_4/2,c_5/0,c_6/3,c_7/2,c_8/1,c_9/1,c_10/1}
      Obligation:
        Full
        basic terms: {activate#,first#,from#,sel#}/{0,cons,n__first,n__from,nil,s}
    Applied Processor:
      EmptyProcessor
    Proof:
      The problem is already closed. The intended complexity is O(1).