We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { a__f(X) -> f(X) , a__f(f(a())) -> a__f(g(f(a()))) , mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) } Obligation: runtime complexity Answer: YES(?,O(n^1)) The input is overlay and right-linear. Switching to innermost rewriting. We are left with following problem, upon which TcT provides the certificate YES(?,O(n^1)). Strict Trs: { a__f(X) -> f(X) , a__f(f(a())) -> a__f(g(f(a()))) , mark(f(X)) -> a__f(mark(X)) , mark(a()) -> a() , mark(g(X)) -> g(X) } Obligation: innermost runtime complexity Answer: YES(?,O(n^1)) The problem is match-bounded by 3. The enriched problem is compatible with the following automaton. { a__f_0(2) -> 1 , a__f_1(3) -> 1 , a__f_1(3) -> 3 , a__f_2(6) -> 1 , a__f_2(6) -> 3 , f_0(2) -> 2 , f_1(2) -> 1 , f_1(5) -> 4 , f_2(3) -> 1 , f_2(3) -> 3 , f_2(8) -> 7 , f_3(6) -> 1 , f_3(6) -> 3 , a_0() -> 2 , a_1() -> 1 , a_1() -> 3 , a_1() -> 5 , a_2() -> 8 , g_0(2) -> 2 , g_1(2) -> 1 , g_1(2) -> 3 , g_1(4) -> 3 , g_2(7) -> 6 , mark_0(2) -> 1 , mark_1(2) -> 3 } Hurray, we answered YES(?,O(n^1))