*** 1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__b() -> a() a__b() -> b() a__f(X,X) -> a__f(a(),b()) a__f(X1,X2) -> f(X1,X2) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2)) -> a__f(mark(X1),X2) Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/2,mark/1} / {a/0,b/0,f/2} Obligation: Full basic terms: {a__b,a__f,mark}/{a,b,f} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a__b() -> a() a__b() -> b() a__f(X,X) -> a__f(a(),b()) a__f(X1,X2) -> f(X1,X2) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2)) -> a__f(mark(X1),X2) Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/2,mark/1} / {a/0,b/0,f/2} Obligation: Innermost basic terms: {a__b,a__f,mark}/{a,b,f} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs a__b#() -> c_1() a__b#() -> c_2() a__f#(X,X) -> c_3(a__f#(a(),b())) a__f#(X1,X2) -> c_4() mark#(a()) -> c_5() mark#(b()) -> c_6(a__b#()) mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)) Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: a__b#() -> c_1() a__b#() -> c_2() a__f#(X,X) -> c_3(a__f#(a(),b())) a__f#(X1,X2) -> c_4() mark#(a()) -> c_5() mark#(b()) -> c_6(a__b#()) mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__b() -> a() a__b() -> b() a__f(X,X) -> a__f(a(),b()) a__f(X1,X2) -> f(X1,X2) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2)) -> a__f(mark(X1),X2) Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/2} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2,4,5} by application of Pre({1,2,4,5}) = {3,6,7}. Here rules are labelled as follows: 1: a__b#() -> c_1() 2: a__b#() -> c_2() 3: a__f#(X,X) -> c_3(a__f#(a() ,b())) 4: a__f#(X1,X2) -> c_4() 5: mark#(a()) -> c_5() 6: mark#(b()) -> c_6(a__b#()) 7: mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2) ,mark#(X1)) *** 1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: a__f#(X,X) -> c_3(a__f#(a(),b())) mark#(b()) -> c_6(a__b#()) mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)) Strict TRS Rules: Weak DP Rules: a__b#() -> c_1() a__b#() -> c_2() a__f#(X1,X2) -> c_4() mark#(a()) -> c_5() Weak TRS Rules: a__b() -> a() a__b() -> b() a__f(X,X) -> a__f(a(),b()) a__f(X1,X2) -> f(X1,X2) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2)) -> a__f(mark(X1),X2) Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/2} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: PredecessorEstimation {onSelection = all simple predecessor estimation selector} Proof: We estimate the number of application of {1,2} by application of Pre({1,2}) = {3}. Here rules are labelled as follows: 1: a__f#(X,X) -> c_3(a__f#(a() ,b())) 2: mark#(b()) -> c_6(a__b#()) 3: mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2) ,mark#(X1)) 4: a__b#() -> c_1() 5: a__b#() -> c_2() 6: a__f#(X1,X2) -> c_4() 7: mark#(a()) -> c_5() *** 1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)) Strict TRS Rules: Weak DP Rules: a__b#() -> c_1() a__b#() -> c_2() a__f#(X,X) -> c_3(a__f#(a(),b())) a__f#(X1,X2) -> c_4() mark#(a()) -> c_5() mark#(b()) -> c_6(a__b#()) Weak TRS Rules: a__b() -> a() a__b() -> b() a__f(X,X) -> a__f(a(),b()) a__f(X1,X2) -> f(X1,X2) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2)) -> a__f(mark(X1),X2) Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/2} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:S:mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)) -->_2 mark#(b()) -> c_6(a__b#()):7 -->_1 a__f#(X,X) -> c_3(a__f#(a(),b())):4 -->_2 mark#(a()) -> c_5():6 -->_1 a__f#(X1,X2) -> c_4():5 -->_2 mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)):1 2:W:a__b#() -> c_1() 3:W:a__b#() -> c_2() 4:W:a__f#(X,X) -> c_3(a__f#(a(),b())) -->_1 a__f#(X1,X2) -> c_4():5 5:W:a__f#(X1,X2) -> c_4() 6:W:mark#(a()) -> c_5() 7:W:mark#(b()) -> c_6(a__b#()) -->_1 a__b#() -> c_2():3 -->_1 a__b#() -> c_1():2 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 6: mark#(a()) -> c_5() 4: a__f#(X,X) -> c_3(a__f#(a() ,b())) 5: a__f#(X1,X2) -> c_4() 7: mark#(b()) -> c_6(a__b#()) 2: a__b#() -> c_1() 3: a__b#() -> c_2() *** 1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__b() -> a() a__b() -> b() a__f(X,X) -> a__f(a(),b()) a__f(X1,X2) -> f(X1,X2) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2)) -> a__f(mark(X1),X2) Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/2} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: SimplifyRHS Proof: Consider the dependency graph 1:S:mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)) -->_2 mark#(f(X1,X2)) -> c_7(a__f#(mark(X1),X2),mark#(X1)):1 Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified: mark#(f(X1,X2)) -> c_7(mark#(X1)) *** 1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(f(X1,X2)) -> c_7(mark#(X1)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a__b() -> a() a__b() -> b() a__f(X,X) -> a__f(a(),b()) a__f(X1,X2) -> f(X1,X2) mark(a()) -> a() mark(b()) -> a__b() mark(f(X1,X2)) -> a__f(mark(X1),X2) Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: mark#(f(X1,X2)) -> c_7(mark#(X1)) *** 1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(f(X1,X2)) -> c_7(mark#(X1)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}} Proof: We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly: 1: mark#(f(X1,X2)) -> c_7(mark#(X1)) The strictly oriented rules are moved into the weak component. *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))] *** Considered Problem: Strict DP Rules: mark#(f(X1,X2)) -> c_7(mark#(X1)) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy} Proof: We apply a matrix interpretation of kind constructor based matrix interpretation: The following argument positions are considered usable: uargs(c_7) = {1} Following symbols are considered usable: {a__b#,a__f#,mark#} TcT has computed the following interpretation: p(a) = [8] p(a__b) = [2] p(a__f) = [4] p(b) = [8] p(f) = [1] x1 + [7] p(mark) = [2] x1 + [0] p(a__b#) = [1] p(a__f#) = [1] x2 + [0] p(mark#) = [4] x1 + [0] p(c_1) = [1] p(c_2) = [0] p(c_3) = [2] p(c_4) = [4] p(c_5) = [8] p(c_6) = [1] p(c_7) = [1] x1 + [14] Following rules are strictly oriented: mark#(f(X1,X2)) = [4] X1 + [28] > [4] X1 + [14] = c_7(mark#(X1)) Following rules are (at-least) weakly oriented: *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mark#(f(X1,X2)) -> c_7(mark#(X1)) Weak TRS Rules: Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: Assumption Proof: () *** 1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: mark#(f(X1,X2)) -> c_7(mark#(X1)) Weak TRS Rules: Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: RemoveWeakSuffixes Proof: Consider the dependency graph 1:W:mark#(f(X1,X2)) -> c_7(mark#(X1)) -->_1 mark#(f(X1,X2)) -> c_7(mark#(X1)):1 The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. 1: mark#(f(X1,X2)) -> c_7(mark#(X1)) *** 1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {a__b/0,a__f/2,mark/1,a__b#/0,a__f#/2,mark#/1} / {a/0,b/0,f/2,c_1/0,c_2/0,c_3/1,c_4/0,c_5/0,c_6/1,c_7/1} Obligation: Innermost basic terms: {a__b#,a__f#,mark#}/{a,b,f} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).