*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(f(n__a()))) g(X) -> n__g(X) Weak DP Rules: Weak TRS Rules: Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} Obligation: Full basic terms: {a,activate,f,g}/{n__a,n__f,n__g} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(f(n__a()))) g(X) -> n__g(X) Weak DP Rules: Weak TRS Rules: Signature: {a/0,activate/1,f/1,g/1} / {n__a/0,n__f/1,n__g/1} Obligation: Innermost basic terms: {a,activate,f,g}/{n__a,n__f,n__g} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: a() -> n__a() activate(X) -> X activate(n__a()) -> a() activate(n__f(X)) -> f(X) activate(n__g(X)) -> g(X) f(X) -> n__f(X) f(n__f(n__a())) -> f(n__g(f(n__a()))) g(X) -> n__g(X) Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {a#,activate#,f#,g#}/{n__a,n__f,n__g} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f(X) -> n__f(X) a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: a#() -> c_1() activate#(X) -> c_2() activate#(n__a()) -> c_3(a#()) activate#(n__f(X)) -> c_4(f#(X)) activate#(n__g(X)) -> c_5(g#(X)) f#(X) -> c_6() f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) g#(X) -> c_8() Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(X) -> n__f(X) Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {a#,activate#,f#,g#}/{n__a,n__f,n__g} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:a#() -> c_1() 2:S:activate#(X) -> c_2() 3:S:activate#(n__a()) -> c_3(a#()) -->_1 a#() -> c_1():1 4:S:activate#(n__f(X)) -> c_4(f#(X)) -->_1 f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())):7 -->_1 f#(X) -> c_6():6 5:S:activate#(n__g(X)) -> c_5(g#(X)) -->_1 g#(X) -> c_8():8 6:S:f#(X) -> c_6() 7:S:f#(n__f(n__a())) -> c_7(f#(n__g(f(n__a()))),f#(n__a())) -->_2 f#(X) -> c_6():6 -->_1 f#(X) -> c_6():6 8:S:g#(X) -> c_8() The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(X) -> n__f(X) Signature: {a/0,activate/1,f/1,g/1,a#/0,activate#/1,f#/1,g#/1} / {n__a/0,n__f/1,n__g/1,c_1/0,c_2/0,c_3/1,c_4/1,c_5/1,c_6/0,c_7/2,c_8/0} Obligation: Innermost basic terms: {a#,activate#,f#,g#}/{n__a,n__f,n__g} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).