*** 1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        
      Strict TRS Rules:
        f_0(x) -> a()
        f_1(x) -> g_1(x,x)
        f_2(x) -> g_2(x,x)
        f_3(x) -> g_3(x,x)
        f_4(x) -> g_4(x,x)
        f_5(x) -> g_5(x,x)
        g_1(s(x),y) -> b(f_0(y),g_1(x,y))
        g_2(s(x),y) -> b(f_1(y),g_2(x,y))
        g_3(s(x),y) -> b(f_2(y),g_3(x,y))
        g_4(s(x),y) -> b(f_3(y),g_4(x,y))
        g_5(s(x),y) -> b(f_4(y),g_5(x,y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2} / {a/0,b/2,s/1}
      Obligation:
        Full
        basic terms: {f_0,f_1,f_2,f_3,f_4,f_5,g_1,g_2,g_3,g_4,g_5}/{a,b,s}
    Applied Processor:
      DependencyPairs {dpKind_ = WIDP}
    Proof:
      We add the following weak dependency pairs:
      
      Strict DPs
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Weak DPs
        
      
      and mark the set of starting terms.
*** 1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        f_0(x) -> a()
        f_1(x) -> g_1(x,x)
        f_2(x) -> g_2(x,x)
        f_3(x) -> g_3(x,x)
        f_4(x) -> g_4(x,x)
        f_5(x) -> g_5(x,x)
        g_1(s(x),y) -> b(f_0(y),g_1(x,y))
        g_2(s(x),y) -> b(f_1(y),g_2(x,y))
        g_3(s(x),y) -> b(f_2(y),g_3(x,y))
        g_4(s(x),y) -> b(f_3(y),g_4(x,y))
        g_5(s(x),y) -> b(f_4(y),g_5(x,y))
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Full
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      UsableRules
    Proof:
      We replace rewrite rules by usable rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
*** 1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Full
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      Succeeding
    Proof:
      ()
*** 1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_0#(x) -> c_1()
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Full
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      PredecessorEstimation {onSelection = all simple predecessor estimation selector}
    Proof:
      We estimate the number of application of
        {1}
      by application of
        Pre({1}) = {7}.
      Here rules are labelled as follows:
        1:  f_0#(x) -> c_1()               
        2:  f_1#(x) -> c_2(g_1#(x,x))      
        3:  f_2#(x) -> c_3(g_2#(x,x))      
        4:  f_3#(x) -> c_4(g_3#(x,x))      
        5:  f_4#(x) -> c_5(g_4#(x,x))      
        6:  f_5#(x) -> c_6(g_5#(x,x))      
        7:  g_1#(s(x),y) -> c_7(f_0#(y)    
                               ,g_1#(x,y)) 
        8:  g_2#(s(x),y) -> c_8(f_1#(y)    
                               ,g_2#(x,y)) 
        9:  g_3#(s(x),y) -> c_9(f_2#(y)    
                               ,g_3#(x,y)) 
        10: g_4#(s(x),y) -> c_10(f_3#(y)   
                                ,g_4#(x,y))
        11: g_5#(s(x),y) -> c_11(f_4#(y)   
                                ,g_5#(x,y))
*** 1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        f_0#(x) -> c_1()
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Full
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      RemoveWeakSuffixes
    Proof:
      Consider the dependency graph
        1:S:f_1#(x) -> c_2(g_1#(x,x))
           -->_1 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        2:S:f_2#(x) -> c_3(g_2#(x,x))
           -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
        
        3:S:f_3#(x) -> c_4(g_3#(x,x))
           -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
        
        4:S:f_4#(x) -> c_5(g_4#(x,x))
           -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
        
        5:S:f_5#(x) -> c_6(g_5#(x,x))
           -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
        
        6:S:g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
           -->_1 f_0#(x) -> c_1():11
           -->_2 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
           -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
           -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
        
        8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
           -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
           -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
        
        9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
           -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
           -->_1 f_3#(x) -> c_4(g_3#(x,x)):3
        
        10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
           -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
           -->_1 f_4#(x) -> c_5(g_4#(x,x)):4
        
        11:W:f_0#(x) -> c_1()
           
        
      The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
        11: f_0#(x) -> c_1()
*** 1.1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/2,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Full
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      SimplifyRHS
    Proof:
      Consider the dependency graph
        1:S:f_1#(x) -> c_2(g_1#(x,x))
           -->_1 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        2:S:f_2#(x) -> c_3(g_2#(x,x))
           -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
        
        3:S:f_3#(x) -> c_4(g_3#(x,x))
           -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
        
        4:S:f_4#(x) -> c_5(g_4#(x,x))
           -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
        
        5:S:f_5#(x) -> c_6(g_5#(x,x))
           -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
        
        6:S:g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y))
           -->_2 g_1#(s(x),y) -> c_7(f_0#(y),g_1#(x,y)):6
        
        7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
           -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
           -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
        
        8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
           -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
           -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
        
        9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
           -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
           -->_1 f_3#(x) -> c_4(g_3#(x,x)):3
        
        10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
           -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
           -->_1 f_4#(x) -> c_5(g_4#(x,x)):4
        
      Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
        g_1#(s(x),y) -> c_7(g_1#(x,y))
*** 1.1.1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        f_5#(x) -> c_6(g_5#(x,x))
        g_1#(s(x),y) -> c_7(g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Full
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      RemoveHeads
    Proof:
      Consider the dependency graph
      
      1:S:f_1#(x) -> c_2(g_1#(x,x))
         -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):6
      
      2:S:f_2#(x) -> c_3(g_2#(x,x))
         -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
      
      3:S:f_3#(x) -> c_4(g_3#(x,x))
         -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
      
      4:S:f_4#(x) -> c_5(g_4#(x,x))
         -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
      
      5:S:f_5#(x) -> c_6(g_5#(x,x))
         -->_1 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
      
      6:S:g_1#(s(x),y) -> c_7(g_1#(x,y))
         -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):6
      
      7:S:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
         -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):7
         -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
      
      8:S:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
         -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):8
         -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
      
      9:S:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
         -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):9
         -->_1 f_3#(x) -> c_4(g_3#(x,x)):3
      
      10:S:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
         -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):10
         -->_1 f_4#(x) -> c_5(g_4#(x,x)):4
      
      
      Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts).
      
      [(5,f_5#(x) -> c_6(g_5#(x,x)))]
*** 1.1.1.1.1.1.1.1 Progress [(?,O(n^5))]  ***
    Considered Problem:
      Strict DP Rules:
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        g_1#(s(x),y) -> c_7(g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      Strict TRS Rules:
        
      Weak DP Rules:
        
      Weak TRS Rules:
        
      Signature:
        {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
      Obligation:
        Full
        basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
    Applied Processor:
      DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
    Proof:
      We decompose the input problem according to the dependency graph into the upper component
        g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
      and a lower component
        f_1#(x) -> c_2(g_1#(x,x))
        f_2#(x) -> c_3(g_2#(x,x))
        f_3#(x) -> c_4(g_3#(x,x))
        f_4#(x) -> c_5(g_4#(x,x))
        g_1#(s(x),y) -> c_7(g_1#(x,y))
        g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
        g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
      Further, following extension rules are added to the lower component.
        g_5#(s(x),y) -> f_4#(y)
        g_5#(s(x),y) -> g_5#(x,y)
  *** 1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
      Considered Problem:
        Strict DP Rules:
          g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
        Obligation:
          Full
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      Applied Processor:
        PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
      Proof:
        We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
          1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                 ,g_5#(x,y))
          
        The strictly oriented rules are moved into the weak component.
    *** 1.1.1.1.1.1.1.1.1.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Full
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
        Proof:
          We apply a matrix interpretation of kind constructor based matrix interpretation:
          The following argument positions are considered usable:
            uargs(c_11) = {2}
          
          Following symbols are considered usable:
            {}
          TcT has computed the following interpretation:
               p(a) = [0]                  
               p(b) = [1] x1 + [1] x2 + [0]
             p(f_0) = [0]                  
             p(f_1) = [0]                  
             p(f_2) = [0]                  
             p(f_3) = [0]                  
             p(f_4) = [0]                  
             p(f_5) = [0]                  
             p(g_1) = [0]                  
             p(g_2) = [8] x2 + [0]         
             p(g_3) = [2] x1 + [8] x2 + [1]
             p(g_4) = [1] x2 + [8]         
             p(g_5) = [1] x1 + [1] x2 + [0]
               p(s) = [1] x1 + [4]         
            p(f_0#) = [2] x1 + [2]         
            p(f_1#) = [2] x1 + [4]         
            p(f_2#) = [1]                  
            p(f_3#) = [0]                  
            p(f_4#) = [1]                  
            p(f_5#) = [1]                  
            p(g_1#) = [2] x1 + [1] x2 + [0]
            p(g_2#) = [0]                  
            p(g_3#) = [1] x1 + [1] x2 + [0]
            p(g_4#) = [2] x2 + [0]         
            p(g_5#) = [4] x1 + [2] x2 + [2]
             p(c_1) = [0]                  
             p(c_2) = [4] x1 + [1]         
             p(c_3) = [1] x1 + [1]         
             p(c_4) = [1]                  
             p(c_5) = [2] x1 + [1]         
             p(c_6) = [4]                  
             p(c_7) = [1] x1 + [8]         
             p(c_8) = [4] x1 + [2]         
             p(c_9) = [4] x1 + [8] x2 + [0]
            p(c_10) = [2] x1 + [2] x2 + [1]
            p(c_11) = [4] x1 + [1] x2 + [6]
          
          Following rules are strictly oriented:
          g_5#(s(x),y) = [4] x + [2] y + [18]   
                       > [4] x + [2] y + [12]   
                       = c_11(f_4#(y),g_5#(x,y))
          
          
          Following rules are (at-least) weakly oriented:
          
    *** 1.1.1.1.1.1.1.1.1.1.1 Progress [(?,O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Full
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          Assumption
        Proof:
          ()
    
    *** 1.1.1.1.1.1.1.1.1.2 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Full
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          RemoveWeakSuffixes
        Proof:
          Consider the dependency graph
            1:W:g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y))
               -->_2 g_5#(s(x),y) -> c_11(f_4#(y),g_5#(x,y)):1
            
          The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
            1: g_5#(s(x),y) -> c_11(f_4#(y)   
                                   ,g_5#(x,y))
    *** 1.1.1.1.1.1.1.1.1.2.1 Progress [(O(1),O(1))]  ***
        Considered Problem:
          Strict DP Rules:
            
          Strict TRS Rules:
            
          Weak DP Rules:
            
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Full
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          EmptyProcessor
        Proof:
          The problem is already closed. The intended complexity is O(1).
    
  *** 1.1.1.1.1.1.1.1.2 Progress [(?,O(n^4))]  ***
      Considered Problem:
        Strict DP Rules:
          f_1#(x) -> c_2(g_1#(x,x))
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          f_4#(x) -> c_5(g_4#(x,x))
          g_1#(s(x),y) -> c_7(g_1#(x,y))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
        Strict TRS Rules:
          
        Weak DP Rules:
          g_5#(s(x),y) -> f_4#(y)
          g_5#(s(x),y) -> g_5#(x,y)
        Weak TRS Rules:
          
        Signature:
          {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
        Obligation:
          Full
          basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
      Applied Processor:
        DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
      Proof:
        We decompose the input problem according to the dependency graph into the upper component
          f_4#(x) -> c_5(g_4#(x,x))
          g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          g_5#(s(x),y) -> f_4#(y)
          g_5#(s(x),y) -> g_5#(x,y)
        and a lower component
          f_1#(x) -> c_2(g_1#(x,x))
          f_2#(x) -> c_3(g_2#(x,x))
          f_3#(x) -> c_4(g_3#(x,x))
          g_1#(s(x),y) -> c_7(g_1#(x,y))
          g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
        Further, following extension rules are added to the lower component.
          f_4#(x) -> g_4#(x,x)
          g_4#(s(x),y) -> f_3#(y)
          g_4#(s(x),y) -> g_4#(x,y)
          g_5#(s(x),y) -> f_4#(y)
          g_5#(s(x),y) -> g_5#(x,y)
    *** 1.1.1.1.1.1.1.1.2.1 Progress [(?,O(n^1))]  ***
        Considered Problem:
          Strict DP Rules:
            f_4#(x) -> c_5(g_4#(x,x))
            g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Full
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
        Proof:
          We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
            2: g_4#(s(x),y) -> c_10(f_3#(y)   
                                   ,g_4#(x,y))
            
          The strictly oriented rules are moved into the weak component.
      *** 1.1.1.1.1.1.1.1.2.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Full
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
          Proof:
            We apply a matrix interpretation of kind constructor based matrix interpretation:
            The following argument positions are considered usable:
              uargs(c_5) = {1},
              uargs(c_10) = {2}
            
            Following symbols are considered usable:
              {}
            TcT has computed the following interpretation:
                 p(a) = [0]                  
                 p(b) = [1] x1 + [1] x2 + [0]
               p(f_0) = [0]                  
               p(f_1) = [0]                  
               p(f_2) = [0]                  
               p(f_3) = [0]                  
               p(f_4) = [0]                  
               p(f_5) = [0]                  
               p(g_1) = [0]                  
               p(g_2) = [0]                  
               p(g_3) = [0]                  
               p(g_4) = [0]                  
               p(g_5) = [0]                  
                 p(s) = [1] x1 + [4]         
              p(f_0#) = [0]                  
              p(f_1#) = [1] x1 + [0]         
              p(f_2#) = [8] x1 + [1]         
              p(f_3#) = [0]                  
              p(f_4#) = [9] x1 + [0]         
              p(f_5#) = [8]                  
              p(g_1#) = [4] x1 + [8] x2 + [0]
              p(g_2#) = [1] x2 + [1]         
              p(g_3#) = [4] x1 + [4] x2 + [1]
              p(g_4#) = [1] x1 + [0]         
              p(g_5#) = [9] x2 + [0]         
               p(c_1) = [0]                  
               p(c_2) = [0]                  
               p(c_3) = [2] x1 + [1]         
               p(c_4) = [4]                  
               p(c_5) = [9] x1 + [0]         
               p(c_6) = [0]                  
               p(c_7) = [0]                  
               p(c_8) = [0]                  
               p(c_9) = [0]                  
              p(c_10) = [1] x2 + [0]         
              p(c_11) = [0]                  
            
            Following rules are strictly oriented:
            g_4#(s(x),y) = [1] x + [4]            
                         > [1] x + [0]            
                         = c_10(f_3#(y),g_4#(x,y))
            
            
            Following rules are (at-least) weakly oriented:
                 f_4#(x) =  [9] x + [0]   
                         >= [9] x + [0]   
                         =  c_5(g_4#(x,x))
            
            g_5#(s(x),y) =  [9] y + [0]   
                         >= [9] y + [0]   
                         =  f_4#(y)       
            
            g_5#(s(x),y) =  [9] y + [0]   
                         >= [9] y + [0]   
                         =  g_5#(x,y)     
            
      *** 1.1.1.1.1.1.1.1.2.1.1.1 Progress [(?,O(1))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
            Strict TRS Rules:
              
            Weak DP Rules:
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Full
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            Assumption
          Proof:
            ()
      
      *** 1.1.1.1.1.1.1.1.2.1.2 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
            Strict TRS Rules:
              
            Weak DP Rules:
              g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Full
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            RemoveWeakSuffixes
          Proof:
            Consider the dependency graph
              1:S:f_4#(x) -> c_5(g_4#(x,x))
                 -->_1 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
              
              2:W:g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y))
                 -->_2 g_4#(s(x),y) -> c_10(f_3#(y),g_4#(x,y)):2
              
              3:W:g_5#(s(x),y) -> f_4#(y)
                 -->_1 f_4#(x) -> c_5(g_4#(x,x)):1
              
              4:W:g_5#(s(x),y) -> g_5#(x,y)
                 -->_1 g_5#(s(x),y) -> g_5#(x,y):4
                 -->_1 g_5#(s(x),y) -> f_4#(y):3
              
            The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
              2: g_4#(s(x),y) -> c_10(f_3#(y)   
                                     ,g_4#(x,y))
      *** 1.1.1.1.1.1.1.1.2.1.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5(g_4#(x,x))
            Strict TRS Rules:
              
            Weak DP Rules:
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Full
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            SimplifyRHS
          Proof:
            Consider the dependency graph
              1:S:f_4#(x) -> c_5(g_4#(x,x))
                 
              
              3:W:g_5#(s(x),y) -> f_4#(y)
                 -->_1 f_4#(x) -> c_5(g_4#(x,x)):1
              
              4:W:g_5#(s(x),y) -> g_5#(x,y)
                 -->_1 g_5#(s(x),y) -> g_5#(x,y):4
                 -->_1 g_5#(s(x),y) -> f_4#(y):3
              
            Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
              f_4#(x) -> c_5()
      *** 1.1.1.1.1.1.1.1.2.1.2.1.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              f_4#(x) -> c_5()
            Strict TRS Rules:
              
            Weak DP Rules:
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Full
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              1: f_4#(x) -> c_5()
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.1.2.1.2.1.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                f_4#(x) -> c_5()
              Strict TRS Rules:
                
              Weak DP Rules:
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                none
              
              Following symbols are considered usable:
                {}
              TcT has computed the following interpretation:
                   p(a) = [0]                  
                   p(b) = [1] x1 + [1] x2 + [0]
                 p(f_0) = [0]                  
                 p(f_1) = [0]                  
                 p(f_2) = [0]                  
                 p(f_3) = [0]                  
                 p(f_4) = [0]                  
                 p(f_5) = [0]                  
                 p(g_1) = [0]                  
                 p(g_2) = [0]                  
                 p(g_3) = [0]                  
                 p(g_4) = [0]                  
                 p(g_5) = [0]                  
                   p(s) = [1] x1 + [0]         
                p(f_0#) = [0]                  
                p(f_1#) = [0]                  
                p(f_2#) = [0]                  
                p(f_3#) = [0]                  
                p(f_4#) = [1]                  
                p(f_5#) = [0]                  
                p(g_1#) = [0]                  
                p(g_2#) = [0]                  
                p(g_3#) = [0]                  
                p(g_4#) = [0]                  
                p(g_5#) = [1]                  
                 p(c_1) = [0]                  
                 p(c_2) = [0]                  
                 p(c_3) = [0]                  
                 p(c_4) = [0]                  
                 p(c_5) = [0]                  
                 p(c_6) = [0]                  
                 p(c_7) = [0]                  
                 p(c_8) = [0]                  
                 p(c_9) = [0]                  
                p(c_10) = [0]                  
                p(c_11) = [1] x2 + [0]         
              
              Following rules are strictly oriented:
              f_4#(x) = [1]  
                      > [0]  
                      = c_5()
              
              
              Following rules are (at-least) weakly oriented:
              g_5#(s(x),y) =  [1]      
                           >= [1]      
                           =  f_4#(y)  
              
              g_5#(s(x),y) =  [1]      
                           >= [1]      
                           =  g_5#(x,y)
              
        *** 1.1.1.1.1.1.1.1.2.1.2.1.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5()
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.2.1.2.1.1.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> c_5()
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:f_4#(x) -> c_5()
                   
                
                2:W:g_5#(s(x),y) -> f_4#(y)
                   -->_1 f_4#(x) -> c_5():1
                
                3:W:g_5#(s(x),y) -> g_5#(x,y)
                   -->_1 g_5#(s(x),y) -> g_5#(x,y):3
                   -->_1 g_5#(s(x),y) -> f_4#(y):2
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                3: g_5#(s(x),y) -> g_5#(x,y)
                2: g_5#(s(x),y) -> f_4#(y)  
                1: f_4#(x) -> c_5()         
        *** 1.1.1.1.1.1.1.1.2.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/0,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).
        
    *** 1.1.1.1.1.1.1.1.2.2 Progress [(?,O(n^3))]  ***
        Considered Problem:
          Strict DP Rules:
            f_1#(x) -> c_2(g_1#(x,x))
            f_2#(x) -> c_3(g_2#(x,x))
            f_3#(x) -> c_4(g_3#(x,x))
            g_1#(s(x),y) -> c_7(g_1#(x,y))
            g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
          Strict TRS Rules:
            
          Weak DP Rules:
            f_4#(x) -> g_4#(x,x)
            g_4#(s(x),y) -> f_3#(y)
            g_4#(s(x),y) -> g_4#(x,y)
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
          Weak TRS Rules:
            
          Signature:
            {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
          Obligation:
            Full
            basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
        Applied Processor:
          DecomposeDG {onSelection = all below first cut in WDG, onUpper = Just someStrategy, onLower = Nothing}
        Proof:
          We decompose the input problem according to the dependency graph into the upper component
            f_3#(x) -> c_4(g_3#(x,x))
            f_4#(x) -> g_4#(x,x)
            g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            g_4#(s(x),y) -> f_3#(y)
            g_4#(s(x),y) -> g_4#(x,y)
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
          and a lower component
            f_1#(x) -> c_2(g_1#(x,x))
            f_2#(x) -> c_3(g_2#(x,x))
            g_1#(s(x),y) -> c_7(g_1#(x,y))
            g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
          Further, following extension rules are added to the lower component.
            f_3#(x) -> g_3#(x,x)
            f_4#(x) -> g_4#(x,x)
            g_3#(s(x),y) -> f_2#(y)
            g_3#(s(x),y) -> g_3#(x,y)
            g_4#(s(x),y) -> f_3#(y)
            g_4#(s(x),y) -> g_4#(x,y)
            g_5#(s(x),y) -> f_4#(y)
            g_5#(s(x),y) -> g_5#(x,y)
      *** 1.1.1.1.1.1.1.1.2.2.1 Progress [(?,O(n^1))]  ***
          Considered Problem:
            Strict DP Rules:
              f_3#(x) -> c_4(g_3#(x,x))
              g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_4#(x) -> g_4#(x,x)
              g_4#(s(x),y) -> f_3#(y)
              g_4#(s(x),y) -> g_4#(x,y)
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Full
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: g_3#(s(x),y) -> c_9(f_2#(y)   
                                    ,g_3#(x,y))
              
            The strictly oriented rules are moved into the weak component.
        *** 1.1.1.1.1.1.1.1.2.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                f_3#(x) -> c_4(g_3#(x,x))
                g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> g_4#(x,x)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a matrix interpretation of kind constructor based matrix interpretation:
              The following argument positions are considered usable:
                uargs(c_4) = {1},
                uargs(c_9) = {2}
              
              Following symbols are considered usable:
                {}
              TcT has computed the following interpretation:
                   p(a) = [0]                   
                   p(b) = [1] x1 + [1] x2 + [0] 
                 p(f_0) = [0]                   
                 p(f_1) = [0]                   
                 p(f_2) = [0]                   
                 p(f_3) = [0]                   
                 p(f_4) = [0]                   
                 p(f_5) = [0]                   
                 p(g_1) = [0]                   
                 p(g_2) = [0]                   
                 p(g_3) = [0]                   
                 p(g_4) = [0]                   
                 p(g_5) = [0]                   
                   p(s) = [1] x1 + [3]          
                p(f_0#) = [0]                   
                p(f_1#) = [0]                   
                p(f_2#) = [0]                   
                p(f_3#) = [12] x1 + [1]         
                p(f_4#) = [13] x1 + [15]        
                p(f_5#) = [2] x1 + [1]          
                p(g_1#) = [2] x1 + [2]          
                p(g_2#) = [2]                   
                p(g_3#) = [8] x1 + [4] x2 + [0] 
                p(g_4#) = [12] x2 + [12]        
                p(g_5#) = [6] x1 + [13] x2 + [1]
                 p(c_1) = [0]                   
                 p(c_2) = [1]                   
                 p(c_3) = [1] x1 + [0]          
                 p(c_4) = [1] x1 + [1]          
                 p(c_5) = [1] x1 + [1]          
                 p(c_6) = [1]                   
                 p(c_7) = [1] x1 + [2]          
                 p(c_8) = [1] x1 + [1] x2 + [4] 
                 p(c_9) = [1] x1 + [1] x2 + [0] 
                p(c_10) = [1] x1 + [2]          
                p(c_11) = [1]                   
              
              Following rules are strictly oriented:
              g_3#(s(x),y) = [8] x + [4] y + [24]  
                           > [8] x + [4] y + [0]   
                           = c_9(f_2#(y),g_3#(x,y))
              
              
              Following rules are (at-least) weakly oriented:
                   f_3#(x) =  [12] x + [1]         
                           >= [12] x + [1]         
                           =  c_4(g_3#(x,x))       
              
                   f_4#(x) =  [13] x + [15]        
                           >= [12] x + [12]        
                           =  g_4#(x,x)            
              
              g_4#(s(x),y) =  [12] y + [12]        
                           >= [12] y + [1]         
                           =  f_3#(y)              
              
              g_4#(s(x),y) =  [12] y + [12]        
                           >= [12] y + [12]        
                           =  g_4#(x,y)            
              
              g_5#(s(x),y) =  [6] x + [13] y + [19]
                           >= [13] y + [15]        
                           =  f_4#(y)              
              
              g_5#(s(x),y) =  [6] x + [13] y + [19]
                           >= [6] x + [13] y + [1] 
                           =  g_5#(x,y)            
              
        *** 1.1.1.1.1.1.1.1.2.2.1.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                f_3#(x) -> c_4(g_3#(x,x))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> g_4#(x,x)
                g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.2.2.1.2 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                f_3#(x) -> c_4(g_3#(x,x))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> g_4#(x,x)
                g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:S:f_3#(x) -> c_4(g_3#(x,x))
                   -->_1 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
                
                2:W:f_4#(x) -> g_4#(x,x)
                   -->_1 g_4#(s(x),y) -> g_4#(x,y):5
                   -->_1 g_4#(s(x),y) -> f_3#(y):4
                
                3:W:g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y))
                   -->_2 g_3#(s(x),y) -> c_9(f_2#(y),g_3#(x,y)):3
                
                4:W:g_4#(s(x),y) -> f_3#(y)
                   -->_1 f_3#(x) -> c_4(g_3#(x,x)):1
                
                5:W:g_4#(s(x),y) -> g_4#(x,y)
                   -->_1 g_4#(s(x),y) -> g_4#(x,y):5
                   -->_1 g_4#(s(x),y) -> f_3#(y):4
                
                6:W:g_5#(s(x),y) -> f_4#(y)
                   -->_1 f_4#(x) -> g_4#(x,x):2
                
                7:W:g_5#(s(x),y) -> g_5#(x,y)
                   -->_1 g_5#(s(x),y) -> g_5#(x,y):7
                   -->_1 g_5#(s(x),y) -> f_4#(y):6
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                3: g_3#(s(x),y) -> c_9(f_2#(y)   
                                      ,g_3#(x,y))
        *** 1.1.1.1.1.1.1.1.2.2.1.2.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                f_3#(x) -> c_4(g_3#(x,x))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> g_4#(x,x)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              SimplifyRHS
            Proof:
              Consider the dependency graph
                1:S:f_3#(x) -> c_4(g_3#(x,x))
                   
                
                2:W:f_4#(x) -> g_4#(x,x)
                   -->_1 g_4#(s(x),y) -> g_4#(x,y):5
                   -->_1 g_4#(s(x),y) -> f_3#(y):4
                
                4:W:g_4#(s(x),y) -> f_3#(y)
                   -->_1 f_3#(x) -> c_4(g_3#(x,x)):1
                
                5:W:g_4#(s(x),y) -> g_4#(x,y)
                   -->_1 g_4#(s(x),y) -> g_4#(x,y):5
                   -->_1 g_4#(s(x),y) -> f_3#(y):4
                
                6:W:g_5#(s(x),y) -> f_4#(y)
                   -->_1 f_4#(x) -> g_4#(x,x):2
                
                7:W:g_5#(s(x),y) -> g_5#(x,y)
                   -->_1 g_5#(s(x),y) -> g_5#(x,y):7
                   -->_1 g_5#(s(x),y) -> f_4#(y):6
                
              Due to missing edges in the depndency graph, the right-hand sides of following rules could be simplified:
                f_3#(x) -> c_4()
        *** 1.1.1.1.1.1.1.1.2.2.1.2.1.1 Progress [(?,O(n^1))]  ***
            Considered Problem:
              Strict DP Rules:
                f_3#(x) -> c_4()
              Strict TRS Rules:
                
              Weak DP Rules:
                f_4#(x) -> g_4#(x,x)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
            Proof:
              We first use the processor NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
                1: f_3#(x) -> c_4()
                
              The strictly oriented rules are moved into the weak component.
          *** 1.1.1.1.1.1.1.1.2.2.1.2.1.1.1 Progress [(?,O(n^1))]  ***
              Considered Problem:
                Strict DP Rules:
                  f_3#(x) -> c_4()
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_4#(x) -> g_4#(x,x)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Full
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                NaturalMI {miDimension = 1, miDegree = 1, miKind = Algebraic, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
              Proof:
                We apply a matrix interpretation of kind constructor based matrix interpretation:
                The following argument positions are considered usable:
                  none
                
                Following symbols are considered usable:
                  {}
                TcT has computed the following interpretation:
                     p(a) = [0]                  
                     p(b) = [1] x1 + [1] x2 + [0]
                   p(f_0) = [0]                  
                   p(f_1) = [0]                  
                   p(f_2) = [0]                  
                   p(f_3) = [0]                  
                   p(f_4) = [0]                  
                   p(f_5) = [0]                  
                   p(g_1) = [0]                  
                   p(g_2) = [0]                  
                   p(g_3) = [0]                  
                   p(g_4) = [0]                  
                   p(g_5) = [0]                  
                     p(s) = [1] x1 + [0]         
                  p(f_0#) = [0]                  
                  p(f_1#) = [0]                  
                  p(f_2#) = [0]                  
                  p(f_3#) = [1]                  
                  p(f_4#) = [1]                  
                  p(f_5#) = [0]                  
                  p(g_1#) = [0]                  
                  p(g_2#) = [1]                  
                  p(g_3#) = [0]                  
                  p(g_4#) = [1]                  
                  p(g_5#) = [1]                  
                   p(c_1) = [0]                  
                   p(c_2) = [1] x1 + [0]         
                   p(c_3) = [0]                  
                   p(c_4) = [0]                  
                   p(c_5) = [0]                  
                   p(c_6) = [0]                  
                   p(c_7) = [0]                  
                   p(c_8) = [0]                  
                   p(c_9) = [0]                  
                  p(c_10) = [0]                  
                  p(c_11) = [0]                  
                
                Following rules are strictly oriented:
                f_3#(x) = [1]  
                        > [0]  
                        = c_4()
                
                
                Following rules are (at-least) weakly oriented:
                     f_4#(x) =  [1]      
                             >= [1]      
                             =  g_4#(x,x)
                
                g_4#(s(x),y) =  [1]      
                             >= [1]      
                             =  f_3#(y)  
                
                g_4#(s(x),y) =  [1]      
                             >= [1]      
                             =  g_4#(x,y)
                
                g_5#(s(x),y) =  [1]      
                             >= [1]      
                             =  f_4#(y)  
                
                g_5#(s(x),y) =  [1]      
                             >= [1]      
                             =  g_5#(x,y)
                
          *** 1.1.1.1.1.1.1.1.2.2.1.2.1.1.1.1 Progress [(?,O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4()
                  f_4#(x) -> g_4#(x,x)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Full
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                Assumption
              Proof:
                ()
          
          *** 1.1.1.1.1.1.1.1.2.2.1.2.1.1.2 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  f_3#(x) -> c_4()
                  f_4#(x) -> g_4#(x,x)
                  g_4#(s(x),y) -> f_3#(y)
                  g_4#(s(x),y) -> g_4#(x,y)
                  g_5#(s(x),y) -> f_4#(y)
                  g_5#(s(x),y) -> g_5#(x,y)
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Full
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                RemoveWeakSuffixes
              Proof:
                Consider the dependency graph
                  1:W:f_3#(x) -> c_4()
                     
                  
                  2:W:f_4#(x) -> g_4#(x,x)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):4
                     -->_1 g_4#(s(x),y) -> f_3#(y):3
                  
                  3:W:g_4#(s(x),y) -> f_3#(y)
                     -->_1 f_3#(x) -> c_4():1
                  
                  4:W:g_4#(s(x),y) -> g_4#(x,y)
                     -->_1 g_4#(s(x),y) -> g_4#(x,y):4
                     -->_1 g_4#(s(x),y) -> f_3#(y):3
                  
                  5:W:g_5#(s(x),y) -> f_4#(y)
                     -->_1 f_4#(x) -> g_4#(x,x):2
                  
                  6:W:g_5#(s(x),y) -> g_5#(x,y)
                     -->_1 g_5#(s(x),y) -> g_5#(x,y):6
                     -->_1 g_5#(s(x),y) -> f_4#(y):5
                  
                The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                  6: g_5#(s(x),y) -> g_5#(x,y)
                  5: g_5#(s(x),y) -> f_4#(y)  
                  2: f_4#(x) -> g_4#(x,x)     
                  4: g_4#(s(x),y) -> g_4#(x,y)
                  3: g_4#(s(x),y) -> f_3#(y)  
                  1: f_3#(x) -> c_4()         
          *** 1.1.1.1.1.1.1.1.2.2.1.2.1.1.2.1 Progress [(O(1),O(1))]  ***
              Considered Problem:
                Strict DP Rules:
                  
                Strict TRS Rules:
                  
                Weak DP Rules:
                  
                Weak TRS Rules:
                  
                Signature:
                  {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/0,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
                Obligation:
                  Full
                  basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
              Applied Processor:
                EmptyProcessor
              Proof:
                The problem is already closed. The intended complexity is O(1).
          
      *** 1.1.1.1.1.1.1.1.2.2.2 Progress [(?,O(n^2))]  ***
          Considered Problem:
            Strict DP Rules:
              f_1#(x) -> c_2(g_1#(x,x))
              f_2#(x) -> c_3(g_2#(x,x))
              g_1#(s(x),y) -> c_7(g_1#(x,y))
              g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
            Strict TRS Rules:
              
            Weak DP Rules:
              f_3#(x) -> g_3#(x,x)
              f_4#(x) -> g_4#(x,x)
              g_3#(s(x),y) -> f_2#(y)
              g_3#(s(x),y) -> g_3#(x,y)
              g_4#(s(x),y) -> f_3#(y)
              g_4#(s(x),y) -> g_4#(x,y)
              g_5#(s(x),y) -> f_4#(y)
              g_5#(s(x),y) -> g_5#(x,y)
            Weak TRS Rules:
              
            Signature:
              {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
            Obligation:
              Full
              basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
          Applied Processor:
            PredecessorEstimationCP {onSelectionCP = any intersect of rules of CDG leaf and strict-rules, withComplexityPair = NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}}
          Proof:
            We first use the processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy} to orient following rules strictly:
              2: f_2#(x) -> c_3(g_2#(x,x))     
              3: g_1#(s(x),y) -> c_7(g_1#(x,y))
              4: g_2#(s(x),y) -> c_8(f_1#(y)   
                                    ,g_2#(x,y))
              
            Consider the set of all dependency pairs
              1:  f_1#(x) -> c_2(g_1#(x,x))     
              2:  f_2#(x) -> c_3(g_2#(x,x))     
              3:  g_1#(s(x),y) -> c_7(g_1#(x,y))
              4:  g_2#(s(x),y) -> c_8(f_1#(y)   
                                     ,g_2#(x,y))
              5:  f_3#(x) -> g_3#(x,x)          
              6:  f_4#(x) -> g_4#(x,x)          
              7:  g_3#(s(x),y) -> f_2#(y)       
              8:  g_3#(s(x),y) -> g_3#(x,y)     
              9:  g_4#(s(x),y) -> f_3#(y)       
              10: g_4#(s(x),y) -> g_4#(x,y)     
              11: g_5#(s(x),y) -> f_4#(y)       
              12: g_5#(s(x),y) -> g_5#(x,y)     
            Processor NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Nothing, greedy = NoGreedy}induces the complexity certificateTIME (?,O(n^2))
            SPACE(?,?)on application of the dependency pairs
              {2,3,4}
            These cover all (indirect) predecessors of dependency pairs
              {1,2,3,4}
            their number of applications is equally bounded.
            The dependency pairs are shifted into the weak component.
        *** 1.1.1.1.1.1.1.1.2.2.2.1 Progress [(?,O(n^2))]  ***
            Considered Problem:
              Strict DP Rules:
                f_1#(x) -> c_2(g_1#(x,x))
                f_2#(x) -> c_3(g_2#(x,x))
                g_1#(s(x),y) -> c_7(g_1#(x,y))
                g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_3#(x) -> g_3#(x,x)
                f_4#(x) -> g_4#(x,x)
                g_3#(s(x),y) -> f_2#(y)
                g_3#(s(x),y) -> g_3#(x,y)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              NaturalPI {shape = Mixed 2, restrict = Restrict, uargs = UArgs, urules = URules, selector = Just first alternative for predecessorEstimation any intersect of rules of CDG leaf and strict-rules, greedy = NoGreedy}
            Proof:
              We apply a polynomial interpretation of kind constructor-based(mixed(2)):
              The following argument positions are considered usable:
                uargs(c_2) = {1},
                uargs(c_3) = {1},
                uargs(c_7) = {1},
                uargs(c_8) = {1,2}
              
              Following symbols are considered usable:
                {}
              TcT has computed the following interpretation:
                   p(a) = 0                                 
                   p(b) = 1 + x1 + x2                       
                 p(f_0) = 1 + 4*x1 + x1^2                   
                 p(f_1) = 1 + x1^2                          
                 p(f_2) = x1^2                              
                 p(f_3) = 1 + 4*x1 + 2*x1^2                 
                 p(f_4) = 1 + x1^2                          
                 p(f_5) = 0                                 
                 p(g_1) = 2 + 2*x1^2 + x2^2                 
                 p(g_2) = 2 + x1 + 4*x1^2 + 4*x2            
                 p(g_3) = x1 + 4*x1*x2 + 2*x2               
                 p(g_4) = 2*x1 + x1*x2                      
                 p(g_5) = 1 + x1 + 4*x1*x2 + 4*x2 + x2^2    
                   p(s) = 1 + x1                            
                p(f_0#) = 1 + x1                            
                p(f_1#) = 1 + x1                            
                p(f_2#) = 5 + 6*x1 + 3*x1^2                 
                p(f_3#) = 6 + 5*x1 + 7*x1^2                 
                p(f_4#) = 6 + 6*x1 + 7*x1^2                 
                p(f_5#) = 1 + 4*x1 + 2*x1^2                 
                p(g_1#) = 1 + x1                            
                p(g_2#) = 2 + 6*x1 + x1*x2 + x1^2 + x2^2    
                p(g_3#) = 6 + 2*x1 + 4*x1*x2 + 3*x2 + 3*x2^2
                p(g_4#) = 6 + 5*x2 + 7*x2^2                 
                p(g_5#) = 6 + 2*x1 + 5*x1*x2 + 4*x2 + 7*x2^2
                 p(c_1) = 1                                 
                 p(c_2) = x1                                
                 p(c_3) = 1 + x1                            
                 p(c_4) = 0                                 
                 p(c_5) = x1                                
                 p(c_6) = x1                                
                 p(c_7) = x1                                
                 p(c_8) = x1 + x2                           
                 p(c_9) = x2                                
                p(c_10) = 1                                 
                p(c_11) = 1 + x2                            
              
              Following rules are strictly oriented:
                   f_2#(x) = 5 + 6*x + 3*x^2              
                           > 3 + 6*x + 3*x^2              
                           = c_3(g_2#(x,x))               
              
              g_1#(s(x),y) = 2 + x                        
                           > 1 + x                        
                           = c_7(g_1#(x,y))               
              
              g_2#(s(x),y) = 9 + 8*x + x*y + x^2 + y + y^2
                           > 3 + 6*x + x*y + x^2 + y + y^2
                           = c_8(f_1#(y),g_2#(x,y))       
              
              
              Following rules are (at-least) weakly oriented:
                   f_1#(x) =  1 + x                        
                           >= 1 + x                        
                           =  c_2(g_1#(x,x))               
              
                   f_3#(x) =  6 + 5*x + 7*x^2              
                           >= 6 + 5*x + 7*x^2              
                           =  g_3#(x,x)                    
              
                   f_4#(x) =  6 + 6*x + 7*x^2              
                           >= 6 + 5*x + 7*x^2              
                           =  g_4#(x,x)                    
              
              g_3#(s(x),y) =  8 + 2*x + 4*x*y + 7*y + 3*y^2
                           >= 5 + 6*y + 3*y^2              
                           =  f_2#(y)                      
              
              g_3#(s(x),y) =  8 + 2*x + 4*x*y + 7*y + 3*y^2
                           >= 6 + 2*x + 4*x*y + 3*y + 3*y^2
                           =  g_3#(x,y)                    
              
              g_4#(s(x),y) =  6 + 5*y + 7*y^2              
                           >= 6 + 5*y + 7*y^2              
                           =  f_3#(y)                      
              
              g_4#(s(x),y) =  6 + 5*y + 7*y^2              
                           >= 6 + 5*y + 7*y^2              
                           =  g_4#(x,y)                    
              
              g_5#(s(x),y) =  8 + 2*x + 5*x*y + 9*y + 7*y^2
                           >= 6 + 6*y + 7*y^2              
                           =  f_4#(y)                      
              
              g_5#(s(x),y) =  8 + 2*x + 5*x*y + 9*y + 7*y^2
                           >= 6 + 2*x + 5*x*y + 4*y + 7*y^2
                           =  g_5#(x,y)                    
              
        *** 1.1.1.1.1.1.1.1.2.2.2.1.1 Progress [(?,O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                f_1#(x) -> c_2(g_1#(x,x))
              Strict TRS Rules:
                
              Weak DP Rules:
                f_2#(x) -> c_3(g_2#(x,x))
                f_3#(x) -> g_3#(x,x)
                f_4#(x) -> g_4#(x,x)
                g_1#(s(x),y) -> c_7(g_1#(x,y))
                g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                g_3#(s(x),y) -> f_2#(y)
                g_3#(s(x),y) -> g_3#(x,y)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              Assumption
            Proof:
              ()
        
        *** 1.1.1.1.1.1.1.1.2.2.2.2 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                f_1#(x) -> c_2(g_1#(x,x))
                f_2#(x) -> c_3(g_2#(x,x))
                f_3#(x) -> g_3#(x,x)
                f_4#(x) -> g_4#(x,x)
                g_1#(s(x),y) -> c_7(g_1#(x,y))
                g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                g_3#(s(x),y) -> f_2#(y)
                g_3#(s(x),y) -> g_3#(x,y)
                g_4#(s(x),y) -> f_3#(y)
                g_4#(s(x),y) -> g_4#(x,y)
                g_5#(s(x),y) -> f_4#(y)
                g_5#(s(x),y) -> g_5#(x,y)
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              RemoveWeakSuffixes
            Proof:
              Consider the dependency graph
                1:W:f_1#(x) -> c_2(g_1#(x,x))
                   -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):5
                
                2:W:f_2#(x) -> c_3(g_2#(x,x))
                   -->_1 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6
                
                3:W:f_3#(x) -> g_3#(x,x)
                   -->_1 g_3#(s(x),y) -> g_3#(x,y):8
                   -->_1 g_3#(s(x),y) -> f_2#(y):7
                
                4:W:f_4#(x) -> g_4#(x,x)
                   -->_1 g_4#(s(x),y) -> g_4#(x,y):10
                   -->_1 g_4#(s(x),y) -> f_3#(y):9
                
                5:W:g_1#(s(x),y) -> c_7(g_1#(x,y))
                   -->_1 g_1#(s(x),y) -> c_7(g_1#(x,y)):5
                
                6:W:g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y))
                   -->_2 g_2#(s(x),y) -> c_8(f_1#(y),g_2#(x,y)):6
                   -->_1 f_1#(x) -> c_2(g_1#(x,x)):1
                
                7:W:g_3#(s(x),y) -> f_2#(y)
                   -->_1 f_2#(x) -> c_3(g_2#(x,x)):2
                
                8:W:g_3#(s(x),y) -> g_3#(x,y)
                   -->_1 g_3#(s(x),y) -> g_3#(x,y):8
                   -->_1 g_3#(s(x),y) -> f_2#(y):7
                
                9:W:g_4#(s(x),y) -> f_3#(y)
                   -->_1 f_3#(x) -> g_3#(x,x):3
                
                10:W:g_4#(s(x),y) -> g_4#(x,y)
                   -->_1 g_4#(s(x),y) -> g_4#(x,y):10
                   -->_1 g_4#(s(x),y) -> f_3#(y):9
                
                11:W:g_5#(s(x),y) -> f_4#(y)
                   -->_1 f_4#(x) -> g_4#(x,x):4
                
                12:W:g_5#(s(x),y) -> g_5#(x,y)
                   -->_1 g_5#(s(x),y) -> g_5#(x,y):12
                   -->_1 g_5#(s(x),y) -> f_4#(y):11
                
              The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed.
                12: g_5#(s(x),y) -> g_5#(x,y)     
                11: g_5#(s(x),y) -> f_4#(y)       
                4:  f_4#(x) -> g_4#(x,x)          
                10: g_4#(s(x),y) -> g_4#(x,y)     
                9:  g_4#(s(x),y) -> f_3#(y)       
                3:  f_3#(x) -> g_3#(x,x)          
                8:  g_3#(s(x),y) -> g_3#(x,y)     
                7:  g_3#(s(x),y) -> f_2#(y)       
                2:  f_2#(x) -> c_3(g_2#(x,x))     
                6:  g_2#(s(x),y) -> c_8(f_1#(y)   
                                       ,g_2#(x,y))
                1:  f_1#(x) -> c_2(g_1#(x,x))     
                5:  g_1#(s(x),y) -> c_7(g_1#(x,y))
        *** 1.1.1.1.1.1.1.1.2.2.2.2.1 Progress [(O(1),O(1))]  ***
            Considered Problem:
              Strict DP Rules:
                
              Strict TRS Rules:
                
              Weak DP Rules:
                
              Weak TRS Rules:
                
              Signature:
                {f_0/1,f_1/1,f_2/1,f_3/1,f_4/1,f_5/1,g_1/2,g_2/2,g_3/2,g_4/2,g_5/2,f_0#/1,f_1#/1,f_2#/1,f_3#/1,f_4#/1,f_5#/1,g_1#/2,g_2#/2,g_3#/2,g_4#/2,g_5#/2} / {a/0,b/2,s/1,c_1/0,c_2/1,c_3/1,c_4/1,c_5/1,c_6/1,c_7/1,c_8/2,c_9/2,c_10/2,c_11/2}
              Obligation:
                Full
                basic terms: {f_0#,f_1#,f_2#,f_3#,f_4#,f_5#,g_1#,g_2#,g_3#,g_4#,g_5#}/{a,b,s}
            Applied Processor:
              EmptyProcessor
            Proof:
              The problem is already closed. The intended complexity is O(1).