We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^10)). Strict Trs: { f_0(x) -> a() , f_1(x) -> g_1(x, x) , g_1(s(x), y) -> b(f_0(y), g_1(x, y)) , f_2(x) -> g_2(x, x) , g_2(s(x), y) -> b(f_1(y), g_2(x, y)) , f_3(x) -> g_3(x, x) , g_3(s(x), y) -> b(f_2(y), g_3(x, y)) , f_4(x) -> g_4(x, x) , g_4(s(x), y) -> b(f_3(y), g_4(x, y)) , f_5(x) -> g_5(x, x) , g_5(s(x), y) -> b(f_4(y), g_5(x, y)) , f_6(x) -> g_6(x, x) , g_6(s(x), y) -> b(f_5(y), g_6(x, y)) , f_7(x) -> g_7(x, x) , g_7(s(x), y) -> b(f_6(y), g_7(x, y)) , f_8(x) -> g_8(x, x) , g_8(s(x), y) -> b(f_7(y), g_8(x, y)) , f_9(x) -> g_9(x, x) , g_9(s(x), y) -> b(f_8(y), g_9(x, y)) , f_10(x) -> g_10(x, x) , g_10(s(x), y) -> b(f_9(y), g_10(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^10)) We add the following weak dependency pairs: Strict DPs: { f_0^#(x) -> c_1() , f_1^#(x) -> c_2(g_1^#(x, x)) , g_1^#(s(x), y) -> c_3(f_0^#(y), g_1^#(x, y)) , f_2^#(x) -> c_4(g_2^#(x, x)) , g_2^#(s(x), y) -> c_5(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_6(g_3^#(x, x)) , g_3^#(s(x), y) -> c_7(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_8(g_4^#(x, x)) , g_4^#(s(x), y) -> c_9(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_12(g_6^#(x, x)) , g_6^#(s(x), y) -> c_13(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_14(g_7^#(x, x)) , g_7^#(s(x), y) -> c_15(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_16(g_8^#(x, x)) , g_8^#(s(x), y) -> c_17(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_18(g_9^#(x, x)) , g_9^#(s(x), y) -> c_19(f_8^#(y), g_9^#(x, y)) , f_10^#(x) -> c_20(g_10^#(x, x)) , g_10^#(s(x), y) -> c_21(f_9^#(y), g_10^#(x, y)) } and mark the set of starting terms. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^10)). Strict DPs: { f_0^#(x) -> c_1() , f_1^#(x) -> c_2(g_1^#(x, x)) , g_1^#(s(x), y) -> c_3(f_0^#(y), g_1^#(x, y)) , f_2^#(x) -> c_4(g_2^#(x, x)) , g_2^#(s(x), y) -> c_5(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_6(g_3^#(x, x)) , g_3^#(s(x), y) -> c_7(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_8(g_4^#(x, x)) , g_4^#(s(x), y) -> c_9(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_12(g_6^#(x, x)) , g_6^#(s(x), y) -> c_13(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_14(g_7^#(x, x)) , g_7^#(s(x), y) -> c_15(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_16(g_8^#(x, x)) , g_8^#(s(x), y) -> c_17(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_18(g_9^#(x, x)) , g_9^#(s(x), y) -> c_19(f_8^#(y), g_9^#(x, y)) , f_10^#(x) -> c_20(g_10^#(x, x)) , g_10^#(s(x), y) -> c_21(f_9^#(y), g_10^#(x, y)) } Strict Trs: { f_0(x) -> a() , f_1(x) -> g_1(x, x) , g_1(s(x), y) -> b(f_0(y), g_1(x, y)) , f_2(x) -> g_2(x, x) , g_2(s(x), y) -> b(f_1(y), g_2(x, y)) , f_3(x) -> g_3(x, x) , g_3(s(x), y) -> b(f_2(y), g_3(x, y)) , f_4(x) -> g_4(x, x) , g_4(s(x), y) -> b(f_3(y), g_4(x, y)) , f_5(x) -> g_5(x, x) , g_5(s(x), y) -> b(f_4(y), g_5(x, y)) , f_6(x) -> g_6(x, x) , g_6(s(x), y) -> b(f_5(y), g_6(x, y)) , f_7(x) -> g_7(x, x) , g_7(s(x), y) -> b(f_6(y), g_7(x, y)) , f_8(x) -> g_8(x, x) , g_8(s(x), y) -> b(f_7(y), g_8(x, y)) , f_9(x) -> g_9(x, x) , g_9(s(x), y) -> b(f_8(y), g_9(x, y)) , f_10(x) -> g_10(x, x) , g_10(s(x), y) -> b(f_9(y), g_10(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^10)) No rule is usable, rules are removed from the input problem. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^10)). Strict DPs: { f_0^#(x) -> c_1() , f_1^#(x) -> c_2(g_1^#(x, x)) , g_1^#(s(x), y) -> c_3(f_0^#(y), g_1^#(x, y)) , f_2^#(x) -> c_4(g_2^#(x, x)) , g_2^#(s(x), y) -> c_5(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_6(g_3^#(x, x)) , g_3^#(s(x), y) -> c_7(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_8(g_4^#(x, x)) , g_4^#(s(x), y) -> c_9(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_12(g_6^#(x, x)) , g_6^#(s(x), y) -> c_13(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_14(g_7^#(x, x)) , g_7^#(s(x), y) -> c_15(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_16(g_8^#(x, x)) , g_8^#(s(x), y) -> c_17(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_18(g_9^#(x, x)) , g_9^#(s(x), y) -> c_19(f_8^#(y), g_9^#(x, y)) , f_10^#(x) -> c_20(g_10^#(x, x)) , g_10^#(s(x), y) -> c_21(f_9^#(y), g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^10)) The weightgap principle applies (using the following constant growth matrix-interpretation) The following argument positions are usable: Uargs(c_2) = {1}, Uargs(c_3) = {1, 2}, Uargs(c_4) = {1}, Uargs(c_5) = {1, 2}, Uargs(c_6) = {1}, Uargs(c_7) = {1, 2}, Uargs(c_8) = {1}, Uargs(c_9) = {1, 2}, Uargs(c_10) = {1}, Uargs(c_11) = {1, 2}, Uargs(c_12) = {1}, Uargs(c_13) = {1, 2}, Uargs(c_14) = {1}, Uargs(c_15) = {1, 2}, Uargs(c_16) = {1}, Uargs(c_17) = {1, 2}, Uargs(c_18) = {1}, Uargs(c_19) = {1, 2}, Uargs(c_20) = {1}, Uargs(c_21) = {1, 2} TcT has computed the following constructor-restricted matrix interpretation. [s](x1) = [1 0] x1 + [0] [0 0] [0] [f_0^#](x1) = [1] [0] [c_1] = [0] [0] [f_1^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_2](x1) = [1 0] x1 + [0] [0 1] [0] [g_1^#](x1, x2) = [0] [0] [c_3](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_2^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_4](x1) = [1 0] x1 + [0] [0 1] [0] [g_2^#](x1, x2) = [0] [0] [c_5](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_3^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_6](x1) = [1 0] x1 + [0] [0 1] [0] [g_3^#](x1, x2) = [0] [0] [c_7](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_4^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_8](x1) = [1 0] x1 + [0] [0 1] [0] [g_4^#](x1, x2) = [0] [0] [c_9](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_5^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_10](x1) = [1 0] x1 + [0] [0 1] [0] [g_5^#](x1, x2) = [0] [0] [c_11](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_6^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_12](x1) = [1 0] x1 + [0] [0 1] [0] [g_6^#](x1, x2) = [0] [0] [c_13](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_7^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_14](x1) = [1 0] x1 + [0] [0 1] [0] [g_7^#](x1, x2) = [0] [0] [c_15](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_8^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_16](x1) = [1 0] x1 + [0] [0 1] [0] [g_8^#](x1, x2) = [0] [0] [c_17](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_9^#](x1) = [0 0] x1 + [0] [2 2] [0] [c_18](x1) = [1 0] x1 + [0] [0 1] [0] [g_9^#](x1, x2) = [0] [0] [c_19](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] [f_10^#](x1) = [1 2] x1 + [2] [1 1] [1] [c_20](x1) = [1 0] x1 + [0] [0 1] [0] [g_10^#](x1, x2) = [0] [0] [c_21](x1, x2) = [1 0] x1 + [1 0] x2 + [0] [0 1] [0 1] [0] The order satisfies the following ordering constraints: [f_0^#(x)] = [1] [0] > [0] [0] = [c_1()] [f_1^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_2(g_1^#(x, x))] [g_1^#(s(x), y)] = [0] [0] ? [1] [0] = [c_3(f_0^#(y), g_1^#(x, y))] [f_2^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_4(g_2^#(x, x))] [g_2^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_5(f_1^#(y), g_2^#(x, y))] [f_3^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_6(g_3^#(x, x))] [g_3^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_7(f_2^#(y), g_3^#(x, y))] [f_4^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_8(g_4^#(x, x))] [g_4^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_9(f_3^#(y), g_4^#(x, y))] [f_5^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_10(g_5^#(x, x))] [g_5^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_11(f_4^#(y), g_5^#(x, y))] [f_6^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_12(g_6^#(x, x))] [g_6^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_13(f_5^#(y), g_6^#(x, y))] [f_7^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_14(g_7^#(x, x))] [g_7^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_15(f_6^#(y), g_7^#(x, y))] [f_8^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_16(g_8^#(x, x))] [g_8^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_17(f_7^#(y), g_8^#(x, y))] [f_9^#(x)] = [0 0] x + [0] [2 2] [0] >= [0] [0] = [c_18(g_9^#(x, x))] [g_9^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_19(f_8^#(y), g_9^#(x, y))] [f_10^#(x)] = [1 2] x + [2] [1 1] [1] > [0] [0] = [c_20(g_10^#(x, x))] [g_10^#(s(x), y)] = [0] [0] ? [0 0] y + [0] [2 2] [0] = [c_21(f_9^#(y), g_10^#(x, y))] Further, it can be verified that all rules not oriented are covered by the weightgap condition. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^10)). Strict DPs: { f_1^#(x) -> c_2(g_1^#(x, x)) , g_1^#(s(x), y) -> c_3(f_0^#(y), g_1^#(x, y)) , f_2^#(x) -> c_4(g_2^#(x, x)) , g_2^#(s(x), y) -> c_5(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_6(g_3^#(x, x)) , g_3^#(s(x), y) -> c_7(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_8(g_4^#(x, x)) , g_4^#(s(x), y) -> c_9(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_12(g_6^#(x, x)) , g_6^#(s(x), y) -> c_13(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_14(g_7^#(x, x)) , g_7^#(s(x), y) -> c_15(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_16(g_8^#(x, x)) , g_8^#(s(x), y) -> c_17(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_18(g_9^#(x, x)) , g_9^#(s(x), y) -> c_19(f_8^#(y), g_9^#(x, y)) , g_10^#(s(x), y) -> c_21(f_9^#(y), g_10^#(x, y)) } Weak DPs: { f_0^#(x) -> c_1() , f_10^#(x) -> c_20(g_10^#(x, x)) } Obligation: runtime complexity Answer: YES(O(1),O(n^10)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_0^#(x) -> c_1() } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^10)). Strict DPs: { f_1^#(x) -> c_2(g_1^#(x, x)) , g_1^#(s(x), y) -> c_3(f_0^#(y), g_1^#(x, y)) , f_2^#(x) -> c_4(g_2^#(x, x)) , g_2^#(s(x), y) -> c_5(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_6(g_3^#(x, x)) , g_3^#(s(x), y) -> c_7(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_8(g_4^#(x, x)) , g_4^#(s(x), y) -> c_9(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_12(g_6^#(x, x)) , g_6^#(s(x), y) -> c_13(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_14(g_7^#(x, x)) , g_7^#(s(x), y) -> c_15(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_16(g_8^#(x, x)) , g_8^#(s(x), y) -> c_17(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_18(g_9^#(x, x)) , g_9^#(s(x), y) -> c_19(f_8^#(y), g_9^#(x, y)) , g_10^#(s(x), y) -> c_21(f_9^#(y), g_10^#(x, y)) } Weak DPs: { f_10^#(x) -> c_20(g_10^#(x, x)) } Obligation: runtime complexity Answer: YES(O(1),O(n^10)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { g_1^#(s(x), y) -> c_3(f_0^#(y), g_1^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^10)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) , g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) } Weak DPs: { f_10^#(x) -> c_20(g_10^#(x, x)) } Obligation: runtime complexity Answer: YES(O(1),O(n^10)) Consider the dependency graph 1: f_1^#(x) -> c_1(g_1^#(x, x)) -->_1 g_1^#(s(x), y) -> c_2(g_1^#(x, y)) :2 2: g_1^#(s(x), y) -> c_2(g_1^#(x, y)) -->_1 g_1^#(s(x), y) -> c_2(g_1^#(x, y)) :2 3: f_2^#(x) -> c_3(g_2^#(x, x)) -->_1 g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) :4 4: g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) -->_2 g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) :4 -->_1 f_1^#(x) -> c_1(g_1^#(x, x)) :1 5: f_3^#(x) -> c_5(g_3^#(x, x)) -->_1 g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) :6 6: g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) -->_2 g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) :6 -->_1 f_2^#(x) -> c_3(g_2^#(x, x)) :3 7: f_4^#(x) -> c_7(g_4^#(x, x)) -->_1 g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) :8 8: g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) -->_2 g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) :8 -->_1 f_3^#(x) -> c_5(g_3^#(x, x)) :5 9: f_5^#(x) -> c_9(g_5^#(x, x)) -->_1 g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) :10 10: g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) -->_2 g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) :10 -->_1 f_4^#(x) -> c_7(g_4^#(x, x)) :7 11: f_6^#(x) -> c_11(g_6^#(x, x)) -->_1 g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) :12 12: g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) -->_2 g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) :12 -->_1 f_5^#(x) -> c_9(g_5^#(x, x)) :9 13: f_7^#(x) -> c_13(g_7^#(x, x)) -->_1 g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) :14 14: g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) -->_2 g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) :14 -->_1 f_6^#(x) -> c_11(g_6^#(x, x)) :11 15: f_8^#(x) -> c_15(g_8^#(x, x)) -->_1 g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) :16 16: g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) -->_2 g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) :16 -->_1 f_7^#(x) -> c_13(g_7^#(x, x)) :13 17: f_9^#(x) -> c_17(g_9^#(x, x)) -->_1 g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) :18 18: g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) -->_2 g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) :18 -->_1 f_8^#(x) -> c_15(g_8^#(x, x)) :15 19: g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) -->_2 g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) :19 -->_1 f_9^#(x) -> c_17(g_9^#(x, x)) :17 20: f_10^#(x) -> c_20(g_10^#(x, x)) -->_1 g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) :19 Following roots of the dependency graph are removed, as the considered set of starting terms is closed under reduction with respect to these rules (modulo compound contexts). { f_10^#(x) -> c_20(g_10^#(x, x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^10)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) , g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^10)) We decompose the input problem according to the dependency graph into the upper component { g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) } Further, following extension rules are added to the lower component. { g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_19) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [3] [f_9^#](x1) = [0] [g_10^#](x1, x2) = [4] x1 + [3] [c_19](x1, x2) = [1] x2 + [4] The order satisfies the following ordering constraints: [g_10^#(s(x), y)] = [4] x + [15] > [4] x + [7] = [c_19(f_9^#(y), g_10^#(x, y))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g_10^#(s(x), y) -> c_19(f_9^#(y), g_10^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^9)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) } Weak DPs: { g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^9)) We decompose the input problem according to the dependency graph into the upper component { f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) } Further, following extension rules are added to the lower component. { f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) } Weak DPs: { g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f_9^#(x) -> c_17(g_9^#(x, x)) , 2: g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_17) = {1}, Uargs(c_18) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [2] [f_8^#](x1) = [1] [f_9^#](x1) = [7] x1 + [1] [g_9^#](x1, x2) = [4] x1 + [0] [g_10^#](x1, x2) = [7] x2 + [1] [c_17](x1) = [1] x1 + [0] [c_18](x1, x2) = [3] x1 + [1] x2 + [4] The order satisfies the following ordering constraints: [f_9^#(x)] = [7] x + [1] > [4] x + [0] = [c_17(g_9^#(x, x))] [g_9^#(s(x), y)] = [4] x + [8] > [4] x + [7] = [c_18(f_8^#(y), g_9^#(x, y))] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [f_9^#(y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [g_10^#(x, y)] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y), g_9^#(x, y)) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^8)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) } Weak DPs: { f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^8)) We decompose the input problem according to the dependency graph into the upper component { f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) } Further, following extension rules are added to the lower component. { f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_8^#(x) -> c_15(g_8^#(x, x)) , g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) } Weak DPs: { f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) , 3: f_9^#(x) -> g_9^#(x, x) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_15) = {1}, Uargs(c_16) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [4] [f_7^#](x1) = [1] [f_8^#](x1) = [4] x1 + [0] [g_8^#](x1, x2) = [2] x1 + [0] [f_9^#](x1) = [7] x1 + [1] [g_9^#](x1, x2) = [5] x2 + [0] [g_10^#](x1, x2) = [7] x2 + [1] [c_15](x1) = [2] x1 + [0] [c_16](x1, x2) = [3] x1 + [1] x2 + [4] The order satisfies the following ordering constraints: [f_8^#(x)] = [4] x + [0] >= [4] x + [0] = [c_15(g_8^#(x, x))] [g_8^#(s(x), y)] = [2] x + [8] > [2] x + [7] = [c_16(f_7^#(y), g_8^#(x, y))] [f_9^#(x)] = [7] x + [1] > [5] x + [0] = [g_9^#(x, x)] [g_9^#(s(x), y)] = [5] y + [0] >= [4] y + [0] = [f_8^#(y)] [g_9^#(s(x), y)] = [5] y + [0] >= [5] y + [0] = [g_9^#(x, y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [f_9^#(y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [g_10^#(x, y)] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { f_8^#(x) -> c_15(g_8^#(x, x)) } Weak DPs: { g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g_8^#(s(x), y) -> c_16(f_7^#(y), g_8^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { f_8^#(x) -> c_15(g_8^#(x, x)) } Weak DPs: { f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { f_8^#(x) -> c_15(g_8^#(x, x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { f_8^#(x) -> c_1() } Weak DPs: { f_9^#(x) -> c_2(g_9^#(x, x)) , g_9^#(s(x), y) -> c_3(f_8^#(y)) , g_9^#(s(x), y) -> c_4(g_9^#(x, y)) , g_10^#(s(x), y) -> c_5(f_9^#(y)) , g_10^#(s(x), y) -> c_6(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f_8^#(x) -> c_1() , 3: g_9^#(s(x), y) -> c_3(f_8^#(y)) , 5: g_10^#(s(x), y) -> c_5(f_9^#(y)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_2) = {1}, Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1} TcT has computed the following constructor-restricted matrix interpretation. Note that the diagonal of the component-wise maxima of interpretation-entries (of constructors) contains no more than 0 non-zero entries. [s](x1) = [1] [f_7^#](x1) = [0] [f_8^#](x1) = [1] [g_8^#](x1, x2) = [0] [f_9^#](x1) = [4] [g_9^#](x1, x2) = [4] [g_10^#](x1, x2) = [6] [c_15](x1) = [0] [c_16](x1, x2) = [0] [c] = [0] [c_1] = [0] [c_2](x1) = [1] x1 + [0] [c_3](x1) = [3] x1 + [0] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] [c_6](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [f_8^#(x)] = [1] > [0] = [c_1()] [f_9^#(x)] = [4] >= [4] = [c_2(g_9^#(x, x))] [g_9^#(s(x), y)] = [4] > [3] = [c_3(f_8^#(y))] [g_9^#(s(x), y)] = [4] >= [4] = [c_4(g_9^#(x, y))] [g_10^#(s(x), y)] = [6] > [4] = [c_5(f_9^#(y))] [g_10^#(s(x), y)] = [6] >= [6] = [c_6(g_10^#(x, y))] We return to the main proof. Consider the set of all dependency pairs : { 1: f_8^#(x) -> c_1() , 2: f_9^#(x) -> c_2(g_9^#(x, x)) , 3: g_9^#(s(x), y) -> c_3(f_8^#(y)) , 4: g_9^#(s(x), y) -> c_4(g_9^#(x, y)) , 5: g_10^#(s(x), y) -> c_5(f_9^#(y)) , 6: g_10^#(s(x), y) -> c_6(g_10^#(x, y)) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(1)) on application of dependency pairs {1,3,5}. These cover all (indirect) predecessors of dependency pairs {1,2,3,5}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_8^#(x) -> c_1() , f_9^#(x) -> c_2(g_9^#(x, x)) , g_9^#(s(x), y) -> c_3(f_8^#(y)) , g_9^#(s(x), y) -> c_4(g_9^#(x, y)) , g_10^#(s(x), y) -> c_5(f_9^#(y)) , g_10^#(s(x), y) -> c_6(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_8^#(x) -> c_1() , f_9^#(x) -> c_2(g_9^#(x, x)) , g_9^#(s(x), y) -> c_3(f_8^#(y)) , g_9^#(s(x), y) -> c_4(g_9^#(x, y)) , g_10^#(s(x), y) -> c_5(f_9^#(y)) , g_10^#(s(x), y) -> c_6(g_10^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^7)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) } Weak DPs: { f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^7)) We decompose the input problem according to the dependency graph into the upper component { f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) } Further, following extension rules are added to the lower component. { f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) } Weak DPs: { f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , 4: g_8^#(s(x), y) -> f_7^#(y) , 5: g_8^#(s(x), y) -> g_8^#(x, y) , 6: f_9^#(x) -> g_9^#(x, x) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_13) = {1}, Uargs(c_14) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [2] [f_6^#](x1) = [0] [f_7^#](x1) = [1] x1 + [7] [g_7^#](x1, x2) = [1] x1 + [7] [f_8^#](x1) = [5] x1 + [0] [g_8^#](x1, x2) = [4] x1 + [1] x2 + [0] [f_9^#](x1) = [7] x1 + [1] [g_9^#](x1, x2) = [5] x2 + [0] [g_10^#](x1, x2) = [7] x2 + [1] [c_13](x1) = [1] x1 + [0] [c_14](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [f_7^#(x)] = [1] x + [7] >= [1] x + [7] = [c_13(g_7^#(x, x))] [g_7^#(s(x), y)] = [1] x + [9] > [1] x + [7] = [c_14(f_6^#(y), g_7^#(x, y))] [f_8^#(x)] = [5] x + [0] >= [5] x + [0] = [g_8^#(x, x)] [g_8^#(s(x), y)] = [4] x + [1] y + [8] > [1] y + [7] = [f_7^#(y)] [g_8^#(s(x), y)] = [4] x + [1] y + [8] > [4] x + [1] y + [0] = [g_8^#(x, y)] [f_9^#(x)] = [7] x + [1] > [5] x + [0] = [g_9^#(x, x)] [g_9^#(s(x), y)] = [5] y + [0] >= [5] y + [0] = [f_8^#(y)] [g_9^#(s(x), y)] = [5] y + [0] >= [5] y + [0] = [g_9^#(x, y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [f_9^#(y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [g_10^#(x, y)] We return to the main proof. Consider the set of all dependency pairs : { 1: f_7^#(x) -> c_13(g_7^#(x, x)) , 2: g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , 3: f_8^#(x) -> g_8^#(x, x) , 4: g_8^#(s(x), y) -> f_7^#(y) , 5: g_8^#(s(x), y) -> g_8^#(x, y) , 6: f_9^#(x) -> g_9^#(x, x) , 7: g_9^#(s(x), y) -> f_8^#(y) , 8: g_9^#(s(x), y) -> g_9^#(x, y) , 9: g_10^#(s(x), y) -> f_9^#(y) , 10: g_10^#(s(x), y) -> g_10^#(x, y) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {2,4,5,6}. These cover all (indirect) predecessors of dependency pairs {1,2,4,5,6}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_7^#(x) -> c_13(g_7^#(x, x)) , g_7^#(s(x), y) -> c_14(f_6^#(y), g_7^#(x, y)) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^6)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) } Weak DPs: { f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^6)) We decompose the input problem according to the dependency graph into the upper component { f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) } Further, following extension rules are added to the lower component. { f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_6^#(x) -> c_11(g_6^#(x, x)) , g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) } Weak DPs: { f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , 9: f_9^#(x) -> g_9^#(x, x) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_11) = {1}, Uargs(c_12) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [1] [f_5^#](x1) = [0] [f_6^#](x1) = [1] x1 + [0] [g_6^#](x1, x2) = [1] x1 + [0] [f_7^#](x1) = [4] x1 + [0] [g_7^#](x1, x2) = [1] x2 + [0] [f_8^#](x1) = [4] x1 + [0] [g_8^#](x1, x2) = [4] x2 + [0] [f_9^#](x1) = [7] x1 + [1] [g_9^#](x1, x2) = [5] x2 + [0] [g_10^#](x1, x2) = [7] x2 + [1] [c_11](x1) = [1] x1 + [0] [c_12](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [f_6^#(x)] = [1] x + [0] >= [1] x + [0] = [c_11(g_6^#(x, x))] [g_6^#(s(x), y)] = [1] x + [1] > [1] x + [0] = [c_12(f_5^#(y), g_6^#(x, y))] [f_7^#(x)] = [4] x + [0] >= [1] x + [0] = [g_7^#(x, x)] [g_7^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_6^#(y)] [g_7^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_7^#(x, y)] [f_8^#(x)] = [4] x + [0] >= [4] x + [0] = [g_8^#(x, x)] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [f_7^#(y)] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [g_8^#(x, y)] [f_9^#(x)] = [7] x + [1] > [5] x + [0] = [g_9^#(x, x)] [g_9^#(s(x), y)] = [5] y + [0] >= [4] y + [0] = [f_8^#(y)] [g_9^#(s(x), y)] = [5] y + [0] >= [5] y + [0] = [g_9^#(x, y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [f_9^#(y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [g_10^#(x, y)] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { f_6^#(x) -> c_11(g_6^#(x, x)) } Weak DPs: { g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g_6^#(s(x), y) -> c_12(f_5^#(y), g_6^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { f_6^#(x) -> c_11(g_6^#(x, x)) } Weak DPs: { f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { f_6^#(x) -> c_11(g_6^#(x, x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Strict DPs: { f_6^#(x) -> c_1() } Weak DPs: { f_7^#(x) -> c_2(g_7^#(x, x)) , g_7^#(s(x), y) -> c_3(f_6^#(y)) , g_7^#(s(x), y) -> c_4(g_7^#(x, y)) , f_8^#(x) -> c_5(g_8^#(x, x)) , g_8^#(s(x), y) -> c_6(f_7^#(y)) , g_8^#(s(x), y) -> c_7(g_8^#(x, y)) , f_9^#(x) -> c_8(g_9^#(x, x)) , g_9^#(s(x), y) -> c_9(f_8^#(y)) , g_9^#(s(x), y) -> c_10(g_9^#(x, y)) , g_10^#(s(x), y) -> c_11(f_9^#(y)) , g_10^#(s(x), y) -> c_12(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f_6^#(x) -> c_1() } Sub-proof: ---------- The following argument positions are usable: Uargs(c_2) = {1}, Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1}, Uargs(c_11) = {1}, Uargs(c_12) = {1} TcT has computed the following constructor-restricted matrix interpretation. Note that the diagonal of the component-wise maxima of interpretation-entries (of constructors) contains no more than 0 non-zero entries. [s](x1) = [4] [f_5^#](x1) = [0] [f_6^#](x1) = [2] [g_6^#](x1, x2) = [0] [f_7^#](x1) = [4] [g_7^#](x1, x2) = [4] [f_8^#](x1) = [4] [g_8^#](x1, x2) = [4] [f_9^#](x1) = [4] [g_9^#](x1, x2) = [4] [g_10^#](x1, x2) = [5] x2 + [4] [c_11](x1) = [0] [c_12](x1, x2) = [0] [c] = [0] [c_1] = [0] [c_2](x1) = [1] x1 + [0] [c_3](x1) = [2] x1 + [0] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] [c_6](x1) = [1] x1 + [0] [c_7](x1) = [1] x1 + [0] [c_8](x1) = [1] x1 + [0] [c_9](x1) = [1] x1 + [0] [c_10](x1) = [1] x1 + [0] [c_11](x1) = [1] x1 + [0] [c_12](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [f_6^#(x)] = [2] > [0] = [c_1()] [f_7^#(x)] = [4] >= [4] = [c_2(g_7^#(x, x))] [g_7^#(s(x), y)] = [4] >= [4] = [c_3(f_6^#(y))] [g_7^#(s(x), y)] = [4] >= [4] = [c_4(g_7^#(x, y))] [f_8^#(x)] = [4] >= [4] = [c_5(g_8^#(x, x))] [g_8^#(s(x), y)] = [4] >= [4] = [c_6(f_7^#(y))] [g_8^#(s(x), y)] = [4] >= [4] = [c_7(g_8^#(x, y))] [f_9^#(x)] = [4] >= [4] = [c_8(g_9^#(x, x))] [g_9^#(s(x), y)] = [4] >= [4] = [c_9(f_8^#(y))] [g_9^#(s(x), y)] = [4] >= [4] = [c_10(g_9^#(x, y))] [g_10^#(s(x), y)] = [5] y + [4] >= [4] = [c_11(f_9^#(y))] [g_10^#(s(x), y)] = [5] y + [4] >= [5] y + [4] = [c_12(g_10^#(x, y))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_6^#(x) -> c_1() , f_7^#(x) -> c_2(g_7^#(x, x)) , g_7^#(s(x), y) -> c_3(f_6^#(y)) , g_7^#(s(x), y) -> c_4(g_7^#(x, y)) , f_8^#(x) -> c_5(g_8^#(x, x)) , g_8^#(s(x), y) -> c_6(f_7^#(y)) , g_8^#(s(x), y) -> c_7(g_8^#(x, y)) , f_9^#(x) -> c_8(g_9^#(x, x)) , g_9^#(s(x), y) -> c_9(f_8^#(y)) , g_9^#(s(x), y) -> c_10(g_9^#(x, y)) , g_10^#(s(x), y) -> c_11(f_9^#(y)) , g_10^#(s(x), y) -> c_12(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_6^#(x) -> c_1() , f_7^#(x) -> c_2(g_7^#(x, x)) , g_7^#(s(x), y) -> c_3(f_6^#(y)) , g_7^#(s(x), y) -> c_4(g_7^#(x, y)) , f_8^#(x) -> c_5(g_8^#(x, x)) , g_8^#(s(x), y) -> c_6(f_7^#(y)) , g_8^#(s(x), y) -> c_7(g_8^#(x, y)) , f_9^#(x) -> c_8(g_9^#(x, x)) , g_9^#(s(x), y) -> c_9(f_8^#(y)) , g_9^#(s(x), y) -> c_10(g_9^#(x, y)) , g_10^#(s(x), y) -> c_11(f_9^#(y)) , g_10^#(s(x), y) -> c_12(g_10^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^5)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) } Weak DPs: { f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^5)) We decompose the input problem according to the dependency graph into the upper component { f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) } Further, following extension rules are added to the lower component. { f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_5^#(x) -> c_9(g_5^#(x, x)) , g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) } Weak DPs: { f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , 12: f_9^#(x) -> g_9^#(x, x) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_9) = {1}, Uargs(c_10) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [1] [f_4^#](x1) = [0] [f_5^#](x1) = [1] x1 + [0] [g_5^#](x1, x2) = [1] x1 + [0] [f_6^#](x1) = [1] x1 + [0] [g_6^#](x1, x2) = [1] x2 + [0] [f_7^#](x1) = [1] x1 + [0] [g_7^#](x1, x2) = [1] x2 + [0] [f_8^#](x1) = [2] x1 + [0] [g_8^#](x1, x2) = [2] x2 + [0] [f_9^#](x1) = [7] x1 + [1] [g_9^#](x1, x2) = [3] x2 + [0] [g_10^#](x1, x2) = [7] x2 + [1] [c_9](x1) = [1] x1 + [0] [c_10](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [f_5^#(x)] = [1] x + [0] >= [1] x + [0] = [c_9(g_5^#(x, x))] [g_5^#(s(x), y)] = [1] x + [1] > [1] x + [0] = [c_10(f_4^#(y), g_5^#(x, y))] [f_6^#(x)] = [1] x + [0] >= [1] x + [0] = [g_6^#(x, x)] [g_6^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_5^#(y)] [g_6^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_6^#(x, y)] [f_7^#(x)] = [1] x + [0] >= [1] x + [0] = [g_7^#(x, x)] [g_7^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_6^#(y)] [g_7^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_7^#(x, y)] [f_8^#(x)] = [2] x + [0] >= [2] x + [0] = [g_8^#(x, x)] [g_8^#(s(x), y)] = [2] y + [0] >= [1] y + [0] = [f_7^#(y)] [g_8^#(s(x), y)] = [2] y + [0] >= [2] y + [0] = [g_8^#(x, y)] [f_9^#(x)] = [7] x + [1] > [3] x + [0] = [g_9^#(x, x)] [g_9^#(s(x), y)] = [3] y + [0] >= [2] y + [0] = [f_8^#(y)] [g_9^#(s(x), y)] = [3] y + [0] >= [3] y + [0] = [g_9^#(x, y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [f_9^#(y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [g_10^#(x, y)] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_5^#(x) -> c_9(g_5^#(x, x)) } Weak DPs: { g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g_5^#(s(x), y) -> c_10(f_4^#(y), g_5^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_5^#(x) -> c_9(g_5^#(x, x)) } Weak DPs: { f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { f_5^#(x) -> c_9(g_5^#(x, x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_5^#(x) -> c_1() } Weak DPs: { f_6^#(x) -> c_2(g_6^#(x, x)) , g_6^#(s(x), y) -> c_3(f_5^#(y)) , g_6^#(s(x), y) -> c_4(g_6^#(x, y)) , f_7^#(x) -> c_5(g_7^#(x, x)) , g_7^#(s(x), y) -> c_6(f_6^#(y)) , g_7^#(s(x), y) -> c_7(g_7^#(x, y)) , f_8^#(x) -> c_8(g_8^#(x, x)) , g_8^#(s(x), y) -> c_9(f_7^#(y)) , g_8^#(s(x), y) -> c_10(g_8^#(x, y)) , f_9^#(x) -> c_11(g_9^#(x, x)) , g_9^#(s(x), y) -> c_12(f_8^#(y)) , g_9^#(s(x), y) -> c_13(g_9^#(x, y)) , g_10^#(s(x), y) -> c_14(f_9^#(y)) , g_10^#(s(x), y) -> c_15(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f_5^#(x) -> c_1() , 3: g_6^#(s(x), y) -> c_3(f_5^#(y)) , 4: g_6^#(s(x), y) -> c_4(g_6^#(x, y)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_2) = {1}, Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1}, Uargs(c_11) = {1}, Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [4] [f_4^#](x1) = [0] [f_5^#](x1) = [1] [g_5^#](x1, x2) = [0] [f_6^#](x1) = [4] x1 + [0] [g_6^#](x1, x2) = [2] x1 + [2] x2 + [0] [f_7^#](x1) = [4] x1 + [0] [g_7^#](x1, x2) = [4] x2 + [0] [f_8^#](x1) = [4] x1 + [0] [g_8^#](x1, x2) = [4] x2 + [0] [f_9^#](x1) = [4] x1 + [0] [g_9^#](x1, x2) = [4] x2 + [0] [g_10^#](x1, x2) = [5] x2 + [0] [c_9](x1) = [0] [c_10](x1, x2) = [0] [c] = [0] [c_1] = [0] [c_2](x1) = [1] x1 + [0] [c_3](x1) = [6] x1 + [0] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] [c_6](x1) = [1] x1 + [0] [c_7](x1) = [1] x1 + [0] [c_8](x1) = [1] x1 + [0] [c_9](x1) = [1] x1 + [0] [c_10](x1) = [1] x1 + [0] [c_11](x1) = [1] x1 + [0] [c_12](x1) = [1] x1 + [0] [c_13](x1) = [1] x1 + [0] [c_14](x1) = [1] x1 + [0] [c_15](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [f_5^#(x)] = [1] > [0] = [c_1()] [f_6^#(x)] = [4] x + [0] >= [4] x + [0] = [c_2(g_6^#(x, x))] [g_6^#(s(x), y)] = [2] x + [2] y + [8] > [6] = [c_3(f_5^#(y))] [g_6^#(s(x), y)] = [2] x + [2] y + [8] > [2] x + [2] y + [0] = [c_4(g_6^#(x, y))] [f_7^#(x)] = [4] x + [0] >= [4] x + [0] = [c_5(g_7^#(x, x))] [g_7^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_6(f_6^#(y))] [g_7^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_7(g_7^#(x, y))] [f_8^#(x)] = [4] x + [0] >= [4] x + [0] = [c_8(g_8^#(x, x))] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_9(f_7^#(y))] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_10(g_8^#(x, y))] [f_9^#(x)] = [4] x + [0] >= [4] x + [0] = [c_11(g_9^#(x, x))] [g_9^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_12(f_8^#(y))] [g_9^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_13(g_9^#(x, y))] [g_10^#(s(x), y)] = [5] y + [0] >= [4] y + [0] = [c_14(f_9^#(y))] [g_10^#(s(x), y)] = [5] y + [0] >= [5] y + [0] = [c_15(g_10^#(x, y))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_5^#(x) -> c_1() , f_6^#(x) -> c_2(g_6^#(x, x)) , g_6^#(s(x), y) -> c_3(f_5^#(y)) , g_6^#(s(x), y) -> c_4(g_6^#(x, y)) , f_7^#(x) -> c_5(g_7^#(x, x)) , g_7^#(s(x), y) -> c_6(f_6^#(y)) , g_7^#(s(x), y) -> c_7(g_7^#(x, y)) , f_8^#(x) -> c_8(g_8^#(x, x)) , g_8^#(s(x), y) -> c_9(f_7^#(y)) , g_8^#(s(x), y) -> c_10(g_8^#(x, y)) , f_9^#(x) -> c_11(g_9^#(x, x)) , g_9^#(s(x), y) -> c_12(f_8^#(y)) , g_9^#(s(x), y) -> c_13(g_9^#(x, y)) , g_10^#(s(x), y) -> c_14(f_9^#(y)) , g_10^#(s(x), y) -> c_15(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_5^#(x) -> c_1() , f_6^#(x) -> c_2(g_6^#(x, x)) , g_6^#(s(x), y) -> c_3(f_5^#(y)) , g_6^#(s(x), y) -> c_4(g_6^#(x, y)) , f_7^#(x) -> c_5(g_7^#(x, x)) , g_7^#(s(x), y) -> c_6(f_6^#(y)) , g_7^#(s(x), y) -> c_7(g_7^#(x, y)) , f_8^#(x) -> c_8(g_8^#(x, x)) , g_8^#(s(x), y) -> c_9(f_7^#(y)) , g_8^#(s(x), y) -> c_10(g_8^#(x, y)) , f_9^#(x) -> c_11(g_9^#(x, x)) , g_9^#(s(x), y) -> c_12(f_8^#(y)) , g_9^#(s(x), y) -> c_13(g_9^#(x, y)) , g_10^#(s(x), y) -> c_14(f_9^#(y)) , g_10^#(s(x), y) -> c_15(g_10^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^4)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) } Weak DPs: { f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^4)) We decompose the input problem according to the dependency graph into the upper component { f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) } Further, following extension rules are added to the lower component. { f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) } Weak DPs: { f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , 15: f_9^#(x) -> g_9^#(x, x) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_7) = {1}, Uargs(c_8) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [1] [f_3^#](x1) = [0] [f_4^#](x1) = [1] x1 + [0] [g_4^#](x1, x2) = [1] x1 + [0] [f_5^#](x1) = [1] x1 + [0] [g_5^#](x1, x2) = [1] x2 + [0] [f_6^#](x1) = [1] x1 + [0] [g_6^#](x1, x2) = [1] x2 + [0] [f_7^#](x1) = [1] x1 + [0] [g_7^#](x1, x2) = [1] x2 + [0] [f_8^#](x1) = [1] x1 + [0] [g_8^#](x1, x2) = [1] x2 + [0] [f_9^#](x1) = [7] x1 + [1] [g_9^#](x1, x2) = [1] x2 + [0] [g_10^#](x1, x2) = [7] x2 + [1] [c_7](x1) = [1] x1 + [0] [c_8](x1, x2) = [1] x1 + [1] x2 + [0] The order satisfies the following ordering constraints: [f_4^#(x)] = [1] x + [0] >= [1] x + [0] = [c_7(g_4^#(x, x))] [g_4^#(s(x), y)] = [1] x + [1] > [1] x + [0] = [c_8(f_3^#(y), g_4^#(x, y))] [f_5^#(x)] = [1] x + [0] >= [1] x + [0] = [g_5^#(x, x)] [g_5^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_4^#(y)] [g_5^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_5^#(x, y)] [f_6^#(x)] = [1] x + [0] >= [1] x + [0] = [g_6^#(x, x)] [g_6^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_5^#(y)] [g_6^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_6^#(x, y)] [f_7^#(x)] = [1] x + [0] >= [1] x + [0] = [g_7^#(x, x)] [g_7^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_6^#(y)] [g_7^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_7^#(x, y)] [f_8^#(x)] = [1] x + [0] >= [1] x + [0] = [g_8^#(x, x)] [g_8^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_7^#(y)] [g_8^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_8^#(x, y)] [f_9^#(x)] = [7] x + [1] > [1] x + [0] = [g_9^#(x, x)] [g_9^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [f_8^#(y)] [g_9^#(s(x), y)] = [1] y + [0] >= [1] y + [0] = [g_9^#(x, y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [f_9^#(y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [g_10^#(x, y)] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_4^#(x) -> c_7(g_4^#(x, x)) } Weak DPs: { g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g_4^#(s(x), y) -> c_8(f_3^#(y), g_4^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_4^#(x) -> c_7(g_4^#(x, x)) } Weak DPs: { f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { f_4^#(x) -> c_7(g_4^#(x, x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_4^#(x) -> c_1() } Weak DPs: { f_5^#(x) -> c_2(g_5^#(x, x)) , g_5^#(s(x), y) -> c_3(f_4^#(y)) , g_5^#(s(x), y) -> c_4(g_5^#(x, y)) , f_6^#(x) -> c_5(g_6^#(x, x)) , g_6^#(s(x), y) -> c_6(f_5^#(y)) , g_6^#(s(x), y) -> c_7(g_6^#(x, y)) , f_7^#(x) -> c_8(g_7^#(x, x)) , g_7^#(s(x), y) -> c_9(f_6^#(y)) , g_7^#(s(x), y) -> c_10(g_7^#(x, y)) , f_8^#(x) -> c_11(g_8^#(x, x)) , g_8^#(s(x), y) -> c_12(f_7^#(y)) , g_8^#(s(x), y) -> c_13(g_8^#(x, y)) , f_9^#(x) -> c_14(g_9^#(x, x)) , g_9^#(s(x), y) -> c_15(f_8^#(y)) , g_9^#(s(x), y) -> c_16(g_9^#(x, y)) , g_10^#(s(x), y) -> c_17(f_9^#(y)) , g_10^#(s(x), y) -> c_18(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f_4^#(x) -> c_1() , 4: g_5^#(s(x), y) -> c_4(g_5^#(x, y)) , 14: f_9^#(x) -> c_14(g_9^#(x, x)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_2) = {1}, Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1}, Uargs(c_11) = {1}, Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}, Uargs(c_16) = {1}, Uargs(c_17) = {1}, Uargs(c_18) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [4] [f_3^#](x1) = [0] [f_4^#](x1) = [1] [g_4^#](x1, x2) = [0] [f_5^#](x1) = [4] x1 + [0] [g_5^#](x1, x2) = [2] x1 + [2] x2 + [0] [f_6^#](x1) = [4] x1 + [0] [g_6^#](x1, x2) = [4] x2 + [0] [f_7^#](x1) = [4] x1 + [0] [g_7^#](x1, x2) = [4] x2 + [0] [f_8^#](x1) = [4] x1 + [0] [g_8^#](x1, x2) = [4] x2 + [0] [f_9^#](x1) = [4] x1 + [1] [g_9^#](x1, x2) = [4] x2 + [0] [g_10^#](x1, x2) = [5] x2 + [1] [c_7](x1) = [0] [c_8](x1, x2) = [0] [c] = [0] [c_1] = [0] [c_2](x1) = [1] x1 + [0] [c_3](x1) = [2] x1 + [6] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] [c_6](x1) = [1] x1 + [0] [c_7](x1) = [1] x1 + [0] [c_8](x1) = [1] x1 + [0] [c_9](x1) = [1] x1 + [0] [c_10](x1) = [1] x1 + [0] [c_11](x1) = [1] x1 + [0] [c_12](x1) = [1] x1 + [0] [c_13](x1) = [1] x1 + [0] [c_14](x1) = [1] x1 + [0] [c_15](x1) = [1] x1 + [0] [c_16](x1) = [1] x1 + [0] [c_17](x1) = [1] x1 + [0] [c_18](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [f_4^#(x)] = [1] > [0] = [c_1()] [f_5^#(x)] = [4] x + [0] >= [4] x + [0] = [c_2(g_5^#(x, x))] [g_5^#(s(x), y)] = [2] x + [2] y + [8] >= [8] = [c_3(f_4^#(y))] [g_5^#(s(x), y)] = [2] x + [2] y + [8] > [2] x + [2] y + [0] = [c_4(g_5^#(x, y))] [f_6^#(x)] = [4] x + [0] >= [4] x + [0] = [c_5(g_6^#(x, x))] [g_6^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_6(f_5^#(y))] [g_6^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_7(g_6^#(x, y))] [f_7^#(x)] = [4] x + [0] >= [4] x + [0] = [c_8(g_7^#(x, x))] [g_7^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_9(f_6^#(y))] [g_7^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_10(g_7^#(x, y))] [f_8^#(x)] = [4] x + [0] >= [4] x + [0] = [c_11(g_8^#(x, x))] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_12(f_7^#(y))] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_13(g_8^#(x, y))] [f_9^#(x)] = [4] x + [1] > [4] x + [0] = [c_14(g_9^#(x, x))] [g_9^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_15(f_8^#(y))] [g_9^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_16(g_9^#(x, y))] [g_10^#(s(x), y)] = [5] y + [1] >= [4] y + [1] = [c_17(f_9^#(y))] [g_10^#(s(x), y)] = [5] y + [1] >= [5] y + [1] = [c_18(g_10^#(x, y))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_4^#(x) -> c_1() , f_5^#(x) -> c_2(g_5^#(x, x)) , g_5^#(s(x), y) -> c_3(f_4^#(y)) , g_5^#(s(x), y) -> c_4(g_5^#(x, y)) , f_6^#(x) -> c_5(g_6^#(x, x)) , g_6^#(s(x), y) -> c_6(f_5^#(y)) , g_6^#(s(x), y) -> c_7(g_6^#(x, y)) , f_7^#(x) -> c_8(g_7^#(x, x)) , g_7^#(s(x), y) -> c_9(f_6^#(y)) , g_7^#(s(x), y) -> c_10(g_7^#(x, y)) , f_8^#(x) -> c_11(g_8^#(x, x)) , g_8^#(s(x), y) -> c_12(f_7^#(y)) , g_8^#(s(x), y) -> c_13(g_8^#(x, y)) , f_9^#(x) -> c_14(g_9^#(x, x)) , g_9^#(s(x), y) -> c_15(f_8^#(y)) , g_9^#(s(x), y) -> c_16(g_9^#(x, y)) , g_10^#(s(x), y) -> c_17(f_9^#(y)) , g_10^#(s(x), y) -> c_18(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_4^#(x) -> c_1() , f_5^#(x) -> c_2(g_5^#(x, x)) , g_5^#(s(x), y) -> c_3(f_4^#(y)) , g_5^#(s(x), y) -> c_4(g_5^#(x, y)) , f_6^#(x) -> c_5(g_6^#(x, x)) , g_6^#(s(x), y) -> c_6(f_5^#(y)) , g_6^#(s(x), y) -> c_7(g_6^#(x, y)) , f_7^#(x) -> c_8(g_7^#(x, x)) , g_7^#(s(x), y) -> c_9(f_6^#(y)) , g_7^#(s(x), y) -> c_10(g_7^#(x, y)) , f_8^#(x) -> c_11(g_8^#(x, x)) , g_8^#(s(x), y) -> c_12(f_7^#(y)) , g_8^#(s(x), y) -> c_13(g_8^#(x, y)) , f_9^#(x) -> c_14(g_9^#(x, x)) , g_9^#(s(x), y) -> c_15(f_8^#(y)) , g_9^#(s(x), y) -> c_16(g_9^#(x, y)) , g_10^#(s(x), y) -> c_17(f_9^#(y)) , g_10^#(s(x), y) -> c_18(g_10^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^3)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) } Weak DPs: { f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^3)) We decompose the input problem according to the dependency graph into the upper component { f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } and lower component { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) } Further, following extension rules are added to the lower component. { f_3^#(x) -> g_3^#(x, x) , g_3^#(s(x), y) -> f_2^#(y) , g_3^#(s(x), y) -> g_3^#(x, y) , f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } TcT solves the upper component with certificate YES(O(1),O(n^1)). Sub-proof: ---------- We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_3^#(x) -> c_5(g_3^#(x, x)) , g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) } Weak DPs: { f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 2: g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_5) = {1}, Uargs(c_6) = {2} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [4] [f_2^#](x1) = [1] [f_3^#](x1) = [1] x1 + [1] [g_3^#](x1, x2) = [1] x1 + [1] [f_4^#](x1) = [1] x1 + [1] [g_4^#](x1, x2) = [1] x2 + [1] [f_5^#](x1) = [1] x1 + [1] [g_5^#](x1, x2) = [1] x2 + [1] [f_6^#](x1) = [1] x1 + [1] [g_6^#](x1, x2) = [1] x2 + [1] [f_7^#](x1) = [1] x1 + [1] [g_7^#](x1, x2) = [1] x2 + [1] [f_8^#](x1) = [1] x1 + [1] [g_8^#](x1, x2) = [1] x2 + [1] [f_9^#](x1) = [7] x1 + [1] [g_9^#](x1, x2) = [1] x2 + [1] [g_10^#](x1, x2) = [7] x2 + [1] [c_5](x1) = [1] x1 + [0] [c_6](x1, x2) = [1] x1 + [1] x2 + [1] The order satisfies the following ordering constraints: [f_3^#(x)] = [1] x + [1] >= [1] x + [1] = [c_5(g_3^#(x, x))] [g_3^#(s(x), y)] = [1] x + [5] > [1] x + [3] = [c_6(f_2^#(y), g_3^#(x, y))] [f_4^#(x)] = [1] x + [1] >= [1] x + [1] = [g_4^#(x, x)] [g_4^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [f_3^#(y)] [g_4^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [g_4^#(x, y)] [f_5^#(x)] = [1] x + [1] >= [1] x + [1] = [g_5^#(x, x)] [g_5^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [f_4^#(y)] [g_5^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [g_5^#(x, y)] [f_6^#(x)] = [1] x + [1] >= [1] x + [1] = [g_6^#(x, x)] [g_6^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [f_5^#(y)] [g_6^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [g_6^#(x, y)] [f_7^#(x)] = [1] x + [1] >= [1] x + [1] = [g_7^#(x, x)] [g_7^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [f_6^#(y)] [g_7^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [g_7^#(x, y)] [f_8^#(x)] = [1] x + [1] >= [1] x + [1] = [g_8^#(x, x)] [g_8^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [f_7^#(y)] [g_8^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [g_8^#(x, y)] [f_9^#(x)] = [7] x + [1] >= [1] x + [1] = [g_9^#(x, x)] [g_9^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [f_8^#(y)] [g_9^#(s(x), y)] = [1] y + [1] >= [1] y + [1] = [g_9^#(x, y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [f_9^#(y)] [g_10^#(s(x), y)] = [7] y + [1] >= [7] y + [1] = [g_10^#(x, y)] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_3^#(x) -> c_5(g_3^#(x, x)) } Weak DPs: { g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) , f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g_3^#(s(x), y) -> c_6(f_2^#(y), g_3^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_3^#(x) -> c_5(g_3^#(x, x)) } Weak DPs: { f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { f_3^#(x) -> c_5(g_3^#(x, x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_3^#(x) -> c_1() } Weak DPs: { f_4^#(x) -> c_2(g_4^#(x, x)) , g_4^#(s(x), y) -> c_3(f_3^#(y)) , g_4^#(s(x), y) -> c_4(g_4^#(x, y)) , f_5^#(x) -> c_5(g_5^#(x, x)) , g_5^#(s(x), y) -> c_6(f_4^#(y)) , g_5^#(s(x), y) -> c_7(g_5^#(x, y)) , f_6^#(x) -> c_8(g_6^#(x, x)) , g_6^#(s(x), y) -> c_9(f_5^#(y)) , g_6^#(s(x), y) -> c_10(g_6^#(x, y)) , f_7^#(x) -> c_11(g_7^#(x, x)) , g_7^#(s(x), y) -> c_12(f_6^#(y)) , g_7^#(s(x), y) -> c_13(g_7^#(x, y)) , f_8^#(x) -> c_14(g_8^#(x, x)) , g_8^#(s(x), y) -> c_15(f_7^#(y)) , g_8^#(s(x), y) -> c_16(g_8^#(x, y)) , f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y)) , g_9^#(s(x), y) -> c_19(g_9^#(x, y)) , g_10^#(s(x), y) -> c_20(f_9^#(y)) , g_10^#(s(x), y) -> c_21(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f_3^#(x) -> c_1() , 4: g_4^#(s(x), y) -> c_4(g_4^#(x, y)) , 17: f_9^#(x) -> c_17(g_9^#(x, x)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_2) = {1}, Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1}, Uargs(c_11) = {1}, Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}, Uargs(c_16) = {1}, Uargs(c_17) = {1}, Uargs(c_18) = {1}, Uargs(c_19) = {1}, Uargs(c_20) = {1}, Uargs(c_21) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [4] [f_2^#](x1) = [0] [f_3^#](x1) = [2] [g_3^#](x1, x2) = [0] [f_4^#](x1) = [4] x1 + [0] [g_4^#](x1, x2) = [2] x1 + [2] x2 + [0] [f_5^#](x1) = [4] x1 + [0] [g_5^#](x1, x2) = [4] x2 + [0] [f_6^#](x1) = [4] x1 + [0] [g_6^#](x1, x2) = [4] x2 + [0] [f_7^#](x1) = [4] x1 + [0] [g_7^#](x1, x2) = [4] x2 + [0] [f_8^#](x1) = [4] x1 + [0] [g_8^#](x1, x2) = [4] x2 + [0] [f_9^#](x1) = [4] x1 + [1] [g_9^#](x1, x2) = [4] x2 + [0] [g_10^#](x1, x2) = [4] x2 + [1] [c_5](x1) = [0] [c_6](x1, x2) = [0] [c] = [0] [c_1] = [1] [c_2](x1) = [1] x1 + [0] [c_3](x1) = [4] x1 + [0] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] [c_6](x1) = [1] x1 + [0] [c_7](x1) = [1] x1 + [0] [c_8](x1) = [1] x1 + [0] [c_9](x1) = [1] x1 + [0] [c_10](x1) = [1] x1 + [0] [c_11](x1) = [1] x1 + [0] [c_12](x1) = [1] x1 + [0] [c_13](x1) = [1] x1 + [0] [c_14](x1) = [1] x1 + [0] [c_15](x1) = [1] x1 + [0] [c_16](x1) = [1] x1 + [0] [c_17](x1) = [1] x1 + [0] [c_18](x1) = [1] x1 + [0] [c_19](x1) = [1] x1 + [0] [c_20](x1) = [1] x1 + [0] [c_21](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [f_3^#(x)] = [2] > [1] = [c_1()] [f_4^#(x)] = [4] x + [0] >= [4] x + [0] = [c_2(g_4^#(x, x))] [g_4^#(s(x), y)] = [2] x + [2] y + [8] >= [8] = [c_3(f_3^#(y))] [g_4^#(s(x), y)] = [2] x + [2] y + [8] > [2] x + [2] y + [0] = [c_4(g_4^#(x, y))] [f_5^#(x)] = [4] x + [0] >= [4] x + [0] = [c_5(g_5^#(x, x))] [g_5^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_6(f_4^#(y))] [g_5^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_7(g_5^#(x, y))] [f_6^#(x)] = [4] x + [0] >= [4] x + [0] = [c_8(g_6^#(x, x))] [g_6^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_9(f_5^#(y))] [g_6^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_10(g_6^#(x, y))] [f_7^#(x)] = [4] x + [0] >= [4] x + [0] = [c_11(g_7^#(x, x))] [g_7^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_12(f_6^#(y))] [g_7^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_13(g_7^#(x, y))] [f_8^#(x)] = [4] x + [0] >= [4] x + [0] = [c_14(g_8^#(x, x))] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_15(f_7^#(y))] [g_8^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_16(g_8^#(x, y))] [f_9^#(x)] = [4] x + [1] > [4] x + [0] = [c_17(g_9^#(x, x))] [g_9^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_18(f_8^#(y))] [g_9^#(s(x), y)] = [4] y + [0] >= [4] y + [0] = [c_19(g_9^#(x, y))] [g_10^#(s(x), y)] = [4] y + [1] >= [4] y + [1] = [c_20(f_9^#(y))] [g_10^#(s(x), y)] = [4] y + [1] >= [4] y + [1] = [c_21(g_10^#(x, y))] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_3^#(x) -> c_1() , f_4^#(x) -> c_2(g_4^#(x, x)) , g_4^#(s(x), y) -> c_3(f_3^#(y)) , g_4^#(s(x), y) -> c_4(g_4^#(x, y)) , f_5^#(x) -> c_5(g_5^#(x, x)) , g_5^#(s(x), y) -> c_6(f_4^#(y)) , g_5^#(s(x), y) -> c_7(g_5^#(x, y)) , f_6^#(x) -> c_8(g_6^#(x, x)) , g_6^#(s(x), y) -> c_9(f_5^#(y)) , g_6^#(s(x), y) -> c_10(g_6^#(x, y)) , f_7^#(x) -> c_11(g_7^#(x, x)) , g_7^#(s(x), y) -> c_12(f_6^#(y)) , g_7^#(s(x), y) -> c_13(g_7^#(x, y)) , f_8^#(x) -> c_14(g_8^#(x, x)) , g_8^#(s(x), y) -> c_15(f_7^#(y)) , g_8^#(s(x), y) -> c_16(g_8^#(x, y)) , f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y)) , g_9^#(s(x), y) -> c_19(g_9^#(x, y)) , g_10^#(s(x), y) -> c_20(f_9^#(y)) , g_10^#(s(x), y) -> c_21(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_3^#(x) -> c_1() , f_4^#(x) -> c_2(g_4^#(x, x)) , g_4^#(s(x), y) -> c_3(f_3^#(y)) , g_4^#(s(x), y) -> c_4(g_4^#(x, y)) , f_5^#(x) -> c_5(g_5^#(x, x)) , g_5^#(s(x), y) -> c_6(f_4^#(y)) , g_5^#(s(x), y) -> c_7(g_5^#(x, y)) , f_6^#(x) -> c_8(g_6^#(x, x)) , g_6^#(s(x), y) -> c_9(f_5^#(y)) , g_6^#(s(x), y) -> c_10(g_6^#(x, y)) , f_7^#(x) -> c_11(g_7^#(x, x)) , g_7^#(s(x), y) -> c_12(f_6^#(y)) , g_7^#(s(x), y) -> c_13(g_7^#(x, y)) , f_8^#(x) -> c_14(g_8^#(x, x)) , g_8^#(s(x), y) -> c_15(f_7^#(y)) , g_8^#(s(x), y) -> c_16(g_8^#(x, y)) , f_9^#(x) -> c_17(g_9^#(x, x)) , g_9^#(s(x), y) -> c_18(f_8^#(y)) , g_9^#(s(x), y) -> c_19(g_9^#(x, y)) , g_10^#(s(x), y) -> c_20(f_9^#(y)) , g_10^#(s(x), y) -> c_21(g_10^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded We return to the main proof. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^2)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) } Weak DPs: { f_3^#(x) -> g_3^#(x, x) , g_3^#(s(x), y) -> f_2^#(y) , g_3^#(s(x), y) -> g_3^#(x, y) , f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^2)) We use the processor 'custom shape polynomial interpretation' to orient following rules strictly. DPs: { 2: g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , 3: f_2^#(x) -> c_3(g_2^#(x, x)) , 5: f_3^#(x) -> g_3^#(x, x) } Sub-proof: ---------- The following argument positions are considered usable: Uargs(c_1) = {1}, Uargs(c_2) = {1}, Uargs(c_3) = {1}, Uargs(c_4) = {1, 2} TcT has computed the following constructor-restricted polynomial interpretation. [s](x1) = 1 + x1 [f_1^#](x1) = x1 [g_1^#](x1, x2) = x1 [f_2^#](x1) = 2 + x1^2 [g_2^#](x1, x2) = x1*x2 [f_3^#](x1) = 3 + x1^2 [g_3^#](x1, x2) = 2 + x2^2 [f_4^#](x1) = 3 + x1^2 [g_4^#](x1, x2) = 3 + x2^2 [f_5^#](x1) = 3 + x1^2 [g_5^#](x1, x2) = 3 + x2^2 [f_6^#](x1) = 3 + x1^2 [g_6^#](x1, x2) = 3 + x2^2 [f_7^#](x1) = 3 + x1^2 [g_7^#](x1, x2) = 3 + x2^2 [f_8^#](x1) = 3 + 2*x1^2 [g_8^#](x1, x2) = 3 + 2*x2^2 [f_9^#](x1) = 3 + 3*x1^2 [g_9^#](x1, x2) = 3 + 2*x2^2 [g_10^#](x1, x2) = 3 + 3*x2 + 3*x2^2 [c_1](x1) = x1 [c_2](x1) = x1 [c_3](x1) = 1 + x1 [c_4](x1, x2) = x1 + x2 This order satisfies the following ordering constraints. [f_1^#(x)] = x >= x = [c_1(g_1^#(x, x))] [g_1^#(s(x), y)] = 1 + x > x = [c_2(g_1^#(x, y))] [f_2^#(x)] = 2 + x^2 > 1 + x^2 = [c_3(g_2^#(x, x))] [g_2^#(s(x), y)] = y + x*y >= y + x*y = [c_4(f_1^#(y), g_2^#(x, y))] [f_3^#(x)] = 3 + x^2 > 2 + x^2 = [g_3^#(x, x)] [g_3^#(s(x), y)] = 2 + y^2 >= 2 + y^2 = [f_2^#(y)] [g_3^#(s(x), y)] = 2 + y^2 >= 2 + y^2 = [g_3^#(x, y)] [f_4^#(x)] = 3 + x^2 >= 3 + x^2 = [g_4^#(x, x)] [g_4^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [f_3^#(y)] [g_4^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [g_4^#(x, y)] [f_5^#(x)] = 3 + x^2 >= 3 + x^2 = [g_5^#(x, x)] [g_5^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [f_4^#(y)] [g_5^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [g_5^#(x, y)] [f_6^#(x)] = 3 + x^2 >= 3 + x^2 = [g_6^#(x, x)] [g_6^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [f_5^#(y)] [g_6^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [g_6^#(x, y)] [f_7^#(x)] = 3 + x^2 >= 3 + x^2 = [g_7^#(x, x)] [g_7^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [f_6^#(y)] [g_7^#(s(x), y)] = 3 + y^2 >= 3 + y^2 = [g_7^#(x, y)] [f_8^#(x)] = 3 + 2*x^2 >= 3 + 2*x^2 = [g_8^#(x, x)] [g_8^#(s(x), y)] = 3 + 2*y^2 >= 3 + y^2 = [f_7^#(y)] [g_8^#(s(x), y)] = 3 + 2*y^2 >= 3 + 2*y^2 = [g_8^#(x, y)] [f_9^#(x)] = 3 + 3*x^2 >= 3 + 2*x^2 = [g_9^#(x, x)] [g_9^#(s(x), y)] = 3 + 2*y^2 >= 3 + 2*y^2 = [f_8^#(y)] [g_9^#(s(x), y)] = 3 + 2*y^2 >= 3 + 2*y^2 = [g_9^#(x, y)] [g_10^#(s(x), y)] = 3 + 3*y + 3*y^2 >= 3 + 3*y^2 = [f_9^#(y)] [g_10^#(s(x), y)] = 3 + 3*y + 3*y^2 >= 3 + 3*y + 3*y^2 = [g_10^#(x, y)] The strictly oriented rules are moved into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) } Weak DPs: { g_1^#(s(x), y) -> c_2(g_1^#(x, y)) , f_2^#(x) -> c_3(g_2^#(x, x)) , f_3^#(x) -> g_3^#(x, x) , g_3^#(s(x), y) -> f_2^#(y) , g_3^#(s(x), y) -> g_3^#(x, y) , f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { g_1^#(s(x), y) -> c_2(g_1^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_1^#(x) -> c_1(g_1^#(x, x)) , g_2^#(s(x), y) -> c_4(f_1^#(y), g_2^#(x, y)) } Weak DPs: { f_2^#(x) -> c_3(g_2^#(x, x)) , f_3^#(x) -> g_3^#(x, x) , g_3^#(s(x), y) -> f_2^#(y) , g_3^#(s(x), y) -> g_3^#(x, y) , f_4^#(x) -> g_4^#(x, x) , g_4^#(s(x), y) -> f_3^#(y) , g_4^#(s(x), y) -> g_4^#(x, y) , f_5^#(x) -> g_5^#(x, x) , g_5^#(s(x), y) -> f_4^#(y) , g_5^#(s(x), y) -> g_5^#(x, y) , f_6^#(x) -> g_6^#(x, x) , g_6^#(s(x), y) -> f_5^#(y) , g_6^#(s(x), y) -> g_6^#(x, y) , f_7^#(x) -> g_7^#(x, x) , g_7^#(s(x), y) -> f_6^#(y) , g_7^#(s(x), y) -> g_7^#(x, y) , f_8^#(x) -> g_8^#(x, x) , g_8^#(s(x), y) -> f_7^#(y) , g_8^#(s(x), y) -> g_8^#(x, y) , f_9^#(x) -> g_9^#(x, x) , g_9^#(s(x), y) -> f_8^#(y) , g_9^#(s(x), y) -> g_9^#(x, y) , g_10^#(s(x), y) -> f_9^#(y) , g_10^#(s(x), y) -> g_10^#(x, y) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) Due to missing edges in the dependency-graph, the right-hand sides of following rules could be simplified: { f_1^#(x) -> c_1(g_1^#(x, x)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(n^1)). Strict DPs: { f_1^#(x) -> c_1() , g_2^#(s(x), y) -> c_2(f_1^#(y), g_2^#(x, y)) } Weak DPs: { f_2^#(x) -> c_3(g_2^#(x, x)) , f_3^#(x) -> c_4(g_3^#(x, x)) , g_3^#(s(x), y) -> c_5(f_2^#(y)) , g_3^#(s(x), y) -> c_6(g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y)) , g_4^#(s(x), y) -> c_9(g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y)) , g_5^#(s(x), y) -> c_12(g_5^#(x, y)) , f_6^#(x) -> c_13(g_6^#(x, x)) , g_6^#(s(x), y) -> c_14(f_5^#(y)) , g_6^#(s(x), y) -> c_15(g_6^#(x, y)) , f_7^#(x) -> c_16(g_7^#(x, x)) , g_7^#(s(x), y) -> c_17(f_6^#(y)) , g_7^#(s(x), y) -> c_18(g_7^#(x, y)) , f_8^#(x) -> c_19(g_8^#(x, x)) , g_8^#(s(x), y) -> c_20(f_7^#(y)) , g_8^#(s(x), y) -> c_21(g_8^#(x, y)) , f_9^#(x) -> c_22(g_9^#(x, x)) , g_9^#(s(x), y) -> c_23(f_8^#(y)) , g_9^#(s(x), y) -> c_24(g_9^#(x, y)) , g_10^#(s(x), y) -> c_25(f_9^#(y)) , g_10^#(s(x), y) -> c_26(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(n^1)) We use the processor 'matrix interpretation of dimension 1' to orient following rules strictly. DPs: { 1: f_1^#(x) -> c_1() , 2: g_2^#(s(x), y) -> c_2(f_1^#(y), g_2^#(x, y)) , 25: g_10^#(s(x), y) -> c_25(f_9^#(y)) , 26: g_10^#(s(x), y) -> c_26(g_10^#(x, y)) } Sub-proof: ---------- The following argument positions are usable: Uargs(c_2) = {1, 2}, Uargs(c_3) = {1}, Uargs(c_4) = {1}, Uargs(c_5) = {1}, Uargs(c_6) = {1}, Uargs(c_7) = {1}, Uargs(c_8) = {1}, Uargs(c_9) = {1}, Uargs(c_10) = {1}, Uargs(c_11) = {1}, Uargs(c_12) = {1}, Uargs(c_13) = {1}, Uargs(c_14) = {1}, Uargs(c_15) = {1}, Uargs(c_16) = {1}, Uargs(c_17) = {1}, Uargs(c_18) = {1}, Uargs(c_19) = {1}, Uargs(c_20) = {1}, Uargs(c_21) = {1}, Uargs(c_22) = {1}, Uargs(c_23) = {1}, Uargs(c_24) = {1}, Uargs(c_25) = {1}, Uargs(c_26) = {1} TcT has computed the following constructor-based matrix interpretation satisfying not(EDA). [s](x1) = [1] x1 + [2] [f_1^#](x1) = [1] [g_1^#](x1, x2) = [0] [f_2^#](x1) = [3] x1 + [7] [g_2^#](x1, x2) = [3] x1 + [7] [f_3^#](x1) = [3] x1 + [7] [g_3^#](x1, x2) = [3] x2 + [7] [f_4^#](x1) = [3] x1 + [7] [g_4^#](x1, x2) = [3] x2 + [7] [f_5^#](x1) = [3] x1 + [7] [g_5^#](x1, x2) = [3] x2 + [7] [f_6^#](x1) = [3] x1 + [7] [g_6^#](x1, x2) = [3] x2 + [7] [f_7^#](x1) = [3] x1 + [7] [g_7^#](x1, x2) = [3] x2 + [7] [f_8^#](x1) = [3] x1 + [7] [g_8^#](x1, x2) = [3] x2 + [7] [f_9^#](x1) = [3] x1 + [7] [g_9^#](x1, x2) = [3] x2 + [7] [g_10^#](x1, x2) = [4] x1 + [5] x2 + [0] [c_1](x1) = [0] [c_2](x1) = [0] [c_3](x1) = [0] [c_4](x1, x2) = [0] [c] = [0] [c_1] = [0] [c_2](x1, x2) = [5] x1 + [1] x2 + [0] [c_3](x1) = [1] x1 + [0] [c_4](x1) = [1] x1 + [0] [c_5](x1) = [1] x1 + [0] [c_6](x1) = [1] x1 + [0] [c_7](x1) = [1] x1 + [0] [c_8](x1) = [1] x1 + [0] [c_9](x1) = [1] x1 + [0] [c_10](x1) = [1] x1 + [0] [c_11](x1) = [1] x1 + [0] [c_12](x1) = [1] x1 + [0] [c_13](x1) = [1] x1 + [0] [c_14](x1) = [1] x1 + [0] [c_15](x1) = [1] x1 + [0] [c_16](x1) = [1] x1 + [0] [c_17](x1) = [1] x1 + [0] [c_18](x1) = [1] x1 + [0] [c_19](x1) = [1] x1 + [0] [c_20](x1) = [1] x1 + [0] [c_21](x1) = [1] x1 + [0] [c_22](x1) = [1] x1 + [0] [c_23](x1) = [1] x1 + [0] [c_24](x1) = [1] x1 + [0] [c_25](x1) = [1] x1 + [0] [c_26](x1) = [1] x1 + [0] The order satisfies the following ordering constraints: [f_1^#(x)] = [1] > [0] = [c_1()] [f_2^#(x)] = [3] x + [7] >= [3] x + [7] = [c_3(g_2^#(x, x))] [g_2^#(s(x), y)] = [3] x + [13] > [3] x + [12] = [c_2(f_1^#(y), g_2^#(x, y))] [f_3^#(x)] = [3] x + [7] >= [3] x + [7] = [c_4(g_3^#(x, x))] [g_3^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_5(f_2^#(y))] [g_3^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_6(g_3^#(x, y))] [f_4^#(x)] = [3] x + [7] >= [3] x + [7] = [c_7(g_4^#(x, x))] [g_4^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_8(f_3^#(y))] [g_4^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_9(g_4^#(x, y))] [f_5^#(x)] = [3] x + [7] >= [3] x + [7] = [c_10(g_5^#(x, x))] [g_5^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_11(f_4^#(y))] [g_5^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_12(g_5^#(x, y))] [f_6^#(x)] = [3] x + [7] >= [3] x + [7] = [c_13(g_6^#(x, x))] [g_6^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_14(f_5^#(y))] [g_6^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_15(g_6^#(x, y))] [f_7^#(x)] = [3] x + [7] >= [3] x + [7] = [c_16(g_7^#(x, x))] [g_7^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_17(f_6^#(y))] [g_7^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_18(g_7^#(x, y))] [f_8^#(x)] = [3] x + [7] >= [3] x + [7] = [c_19(g_8^#(x, x))] [g_8^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_20(f_7^#(y))] [g_8^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_21(g_8^#(x, y))] [f_9^#(x)] = [3] x + [7] >= [3] x + [7] = [c_22(g_9^#(x, x))] [g_9^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_23(f_8^#(y))] [g_9^#(s(x), y)] = [3] y + [7] >= [3] y + [7] = [c_24(g_9^#(x, y))] [g_10^#(s(x), y)] = [4] x + [5] y + [8] > [3] y + [7] = [c_25(f_9^#(y))] [g_10^#(s(x), y)] = [4] x + [5] y + [8] > [4] x + [5] y + [0] = [c_26(g_10^#(x, y))] We return to the main proof. Consider the set of all dependency pairs : { 1: f_1^#(x) -> c_1() , 2: g_2^#(s(x), y) -> c_2(f_1^#(y), g_2^#(x, y)) , 3: f_2^#(x) -> c_3(g_2^#(x, x)) , 4: f_3^#(x) -> c_4(g_3^#(x, x)) , 5: g_3^#(s(x), y) -> c_5(f_2^#(y)) , 6: g_3^#(s(x), y) -> c_6(g_3^#(x, y)) , 7: f_4^#(x) -> c_7(g_4^#(x, x)) , 8: g_4^#(s(x), y) -> c_8(f_3^#(y)) , 9: g_4^#(s(x), y) -> c_9(g_4^#(x, y)) , 10: f_5^#(x) -> c_10(g_5^#(x, x)) , 11: g_5^#(s(x), y) -> c_11(f_4^#(y)) , 12: g_5^#(s(x), y) -> c_12(g_5^#(x, y)) , 13: f_6^#(x) -> c_13(g_6^#(x, x)) , 14: g_6^#(s(x), y) -> c_14(f_5^#(y)) , 15: g_6^#(s(x), y) -> c_15(g_6^#(x, y)) , 16: f_7^#(x) -> c_16(g_7^#(x, x)) , 17: g_7^#(s(x), y) -> c_17(f_6^#(y)) , 18: g_7^#(s(x), y) -> c_18(g_7^#(x, y)) , 19: f_8^#(x) -> c_19(g_8^#(x, x)) , 20: g_8^#(s(x), y) -> c_20(f_7^#(y)) , 21: g_8^#(s(x), y) -> c_21(g_8^#(x, y)) , 22: f_9^#(x) -> c_22(g_9^#(x, x)) , 23: g_9^#(s(x), y) -> c_23(f_8^#(y)) , 24: g_9^#(s(x), y) -> c_24(g_9^#(x, y)) , 25: g_10^#(s(x), y) -> c_25(f_9^#(y)) , 26: g_10^#(s(x), y) -> c_26(g_10^#(x, y)) } Processor 'matrix interpretation of dimension 1' induces the complexity certificate YES(?,O(n^1)) on application of dependency pairs {1,2,25,26}. These cover all (indirect) predecessors of dependency pairs {1,2,22,25,26}, their number of application is equally bounded. The dependency pairs are shifted into the weak component. We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Weak DPs: { f_1^#(x) -> c_1() , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_2(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_4(g_3^#(x, x)) , g_3^#(s(x), y) -> c_5(f_2^#(y)) , g_3^#(s(x), y) -> c_6(g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y)) , g_4^#(s(x), y) -> c_9(g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y)) , g_5^#(s(x), y) -> c_12(g_5^#(x, y)) , f_6^#(x) -> c_13(g_6^#(x, x)) , g_6^#(s(x), y) -> c_14(f_5^#(y)) , g_6^#(s(x), y) -> c_15(g_6^#(x, y)) , f_7^#(x) -> c_16(g_7^#(x, x)) , g_7^#(s(x), y) -> c_17(f_6^#(y)) , g_7^#(s(x), y) -> c_18(g_7^#(x, y)) , f_8^#(x) -> c_19(g_8^#(x, x)) , g_8^#(s(x), y) -> c_20(f_7^#(y)) , g_8^#(s(x), y) -> c_21(g_8^#(x, y)) , f_9^#(x) -> c_22(g_9^#(x, x)) , g_9^#(s(x), y) -> c_23(f_8^#(y)) , g_9^#(s(x), y) -> c_24(g_9^#(x, y)) , g_10^#(s(x), y) -> c_25(f_9^#(y)) , g_10^#(s(x), y) -> c_26(g_10^#(x, y)) } Obligation: runtime complexity Answer: YES(O(1),O(1)) The following weak DPs constitute a sub-graph of the DG that is closed under successors. The DPs are removed. { f_1^#(x) -> c_1() , f_2^#(x) -> c_3(g_2^#(x, x)) , g_2^#(s(x), y) -> c_2(f_1^#(y), g_2^#(x, y)) , f_3^#(x) -> c_4(g_3^#(x, x)) , g_3^#(s(x), y) -> c_5(f_2^#(y)) , g_3^#(s(x), y) -> c_6(g_3^#(x, y)) , f_4^#(x) -> c_7(g_4^#(x, x)) , g_4^#(s(x), y) -> c_8(f_3^#(y)) , g_4^#(s(x), y) -> c_9(g_4^#(x, y)) , f_5^#(x) -> c_10(g_5^#(x, x)) , g_5^#(s(x), y) -> c_11(f_4^#(y)) , g_5^#(s(x), y) -> c_12(g_5^#(x, y)) , f_6^#(x) -> c_13(g_6^#(x, x)) , g_6^#(s(x), y) -> c_14(f_5^#(y)) , g_6^#(s(x), y) -> c_15(g_6^#(x, y)) , f_7^#(x) -> c_16(g_7^#(x, x)) , g_7^#(s(x), y) -> c_17(f_6^#(y)) , g_7^#(s(x), y) -> c_18(g_7^#(x, y)) , f_8^#(x) -> c_19(g_8^#(x, x)) , g_8^#(s(x), y) -> c_20(f_7^#(y)) , g_8^#(s(x), y) -> c_21(g_8^#(x, y)) , f_9^#(x) -> c_22(g_9^#(x, x)) , g_9^#(s(x), y) -> c_23(f_8^#(y)) , g_9^#(s(x), y) -> c_24(g_9^#(x, y)) , g_10^#(s(x), y) -> c_25(f_9^#(y)) , g_10^#(s(x), y) -> c_26(g_10^#(x, y)) } We are left with following problem, upon which TcT provides the certificate YES(O(1),O(1)). Rules: Empty Obligation: runtime complexity Answer: YES(O(1),O(1)) Empty rules are trivially bounded Hurray, we answered YES(O(1),O(n^10))