(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f_0(x) → a
f_1(x) → g_1(x, x)
g_1(s(x), y) → b(f_0(y), g_1(x, y))
f_2(x) → g_2(x, x)
g_2(s(x), y) → b(f_1(y), g_2(x, y))
f_3(x) → g_3(x, x)
g_3(s(x), y) → b(f_2(y), g_3(x, y))
f_4(x) → g_4(x, x)
g_4(s(x), y) → b(f_3(y), g_4(x, y))
f_5(x) → g_5(x, x)
g_5(s(x), y) → b(f_4(y), g_5(x, y))
f_6(x) → g_6(x, x)
g_6(s(x), y) → b(f_5(y), g_6(x, y))
f_7(x) → g_7(x, x)
g_7(s(x), y) → b(f_6(y), g_7(x, y))
f_8(x) → g_8(x, x)
g_8(s(x), y) → b(f_7(y), g_8(x, y))
f_9(x) → g_9(x, x)
g_9(s(x), y) → b(f_8(y), g_9(x, y))
f_10(x) → g_10(x, x)
g_10(s(x), y) → b(f_9(y), g_10(x, y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
g_1(s(x), y) →+ b(f_0(y), g_1(x, y))
gives rise to a decreasing loop by considering the right hand sides subterm at position [1].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)