(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0, XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0, cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0', XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
from(X) → cons(X, from(s(X)))
head(cons(X, XS)) → X
2nd(cons(X, XS)) → head(XS)
take(0', XS) → nil
take(s(N), cons(X, XS)) → cons(X, take(N, XS))
sel(0', cons(X, XS)) → X
sel(s(N), cons(X, XS)) → sel(N, XS)
Types:
from :: s:0' → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
head :: cons:nil → s:0'
2nd :: cons:nil → s:0'
take :: s:0' → cons:nil → cons:nil
0' :: s:0'
nil :: cons:nil
sel :: s:0' → cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
from, take, sel
(6) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
from(
s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
XS)
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
take(
N,
XS))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
from :: s:0' → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
head :: cons:nil → s:0'
2nd :: cons:nil → s:0'
take :: s:0' → cons:nil → cons:nil
0' :: s:0'
nil :: cons:nil
sel :: s:0' → cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
from, take, sel
(7) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol from.
(8) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
from(
s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
XS)
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
take(
N,
XS))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
from :: s:0' → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
head :: cons:nil → s:0'
2nd :: cons:nil → s:0'
take :: s:0' → cons:nil → cons:nil
0' :: s:0'
nil :: cons:nil
sel :: s:0' → cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
take, sel
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
take(
gen_s:0'4_0(
n111_0),
gen_cons:nil3_0(
n111_0)) →
gen_cons:nil3_0(
n111_0), rt ∈ Ω(1 + n111
0)
Induction Base:
take(gen_s:0'4_0(0), gen_cons:nil3_0(0)) →RΩ(1)
nil
Induction Step:
take(gen_s:0'4_0(+(n111_0, 1)), gen_cons:nil3_0(+(n111_0, 1))) →RΩ(1)
cons(0', take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0))) →IH
cons(0', gen_cons:nil3_0(c112_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
from(
s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
XS)
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
take(
N,
XS))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
from :: s:0' → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
head :: cons:nil → s:0'
2nd :: cons:nil → s:0'
take :: s:0' → cons:nil → cons:nil
0' :: s:0'
nil :: cons:nil
sel :: s:0' → cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0)) → gen_cons:nil3_0(n111_0), rt ∈ Ω(1 + n1110)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
The following defined symbols remain to be analysed:
sel
(12) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel(
gen_s:0'4_0(
n389_0),
gen_cons:nil3_0(
+(
1,
n389_0))) →
gen_s:0'4_0(
0), rt ∈ Ω(1 + n389
0)
Induction Base:
sel(gen_s:0'4_0(0), gen_cons:nil3_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
sel(gen_s:0'4_0(+(n389_0, 1)), gen_cons:nil3_0(+(1, +(n389_0, 1)))) →RΩ(1)
sel(gen_s:0'4_0(n389_0), gen_cons:nil3_0(+(1, n389_0))) →IH
gen_s:0'4_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(13) Complex Obligation (BEST)
(14) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
from(
s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
XS)
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
take(
N,
XS))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
from :: s:0' → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
head :: cons:nil → s:0'
2nd :: cons:nil → s:0'
take :: s:0' → cons:nil → cons:nil
0' :: s:0'
nil :: cons:nil
sel :: s:0' → cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0)) → gen_cons:nil3_0(n111_0), rt ∈ Ω(1 + n1110)
sel(gen_s:0'4_0(n389_0), gen_cons:nil3_0(+(1, n389_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n3890)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0)) → gen_cons:nil3_0(n111_0), rt ∈ Ω(1 + n1110)
(16) BOUNDS(n^1, INF)
(17) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
from(
s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
XS)
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
take(
N,
XS))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
from :: s:0' → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
head :: cons:nil → s:0'
2nd :: cons:nil → s:0'
take :: s:0' → cons:nil → cons:nil
0' :: s:0'
nil :: cons:nil
sel :: s:0' → cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0)) → gen_cons:nil3_0(n111_0), rt ∈ Ω(1 + n1110)
sel(gen_s:0'4_0(n389_0), gen_cons:nil3_0(+(1, n389_0))) → gen_s:0'4_0(0), rt ∈ Ω(1 + n3890)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0)) → gen_cons:nil3_0(n111_0), rt ∈ Ω(1 + n1110)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
from(
X) →
cons(
X,
from(
s(
X)))
head(
cons(
X,
XS)) →
X2nd(
cons(
X,
XS)) →
head(
XS)
take(
0',
XS) →
niltake(
s(
N),
cons(
X,
XS)) →
cons(
X,
take(
N,
XS))
sel(
0',
cons(
X,
XS)) →
Xsel(
s(
N),
cons(
X,
XS)) →
sel(
N,
XS)
Types:
from :: s:0' → cons:nil
cons :: s:0' → cons:nil → cons:nil
s :: s:0' → s:0'
head :: cons:nil → s:0'
2nd :: cons:nil → s:0'
take :: s:0' → cons:nil → cons:nil
0' :: s:0'
nil :: cons:nil
sel :: s:0' → cons:nil → s:0'
hole_cons:nil1_0 :: cons:nil
hole_s:0'2_0 :: s:0'
gen_cons:nil3_0 :: Nat → cons:nil
gen_s:0'4_0 :: Nat → s:0'
Lemmas:
take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0)) → gen_cons:nil3_0(n111_0), rt ∈ Ω(1 + n1110)
Generator Equations:
gen_cons:nil3_0(0) ⇔ nil
gen_cons:nil3_0(+(x, 1)) ⇔ cons(0', gen_cons:nil3_0(x))
gen_s:0'4_0(0) ⇔ 0'
gen_s:0'4_0(+(x, 1)) ⇔ s(gen_s:0'4_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
take(gen_s:0'4_0(n111_0), gen_cons:nil3_0(n111_0)) → gen_cons:nil3_0(n111_0), rt ∈ Ω(1 + n1110)
(22) BOUNDS(n^1, INF)