(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
dbl(0) → 0
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0, cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0) → 01
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0, cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0) → 01
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
dbl(0') → 0'
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0') → 01'
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0', cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0') → 01'
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
dbl(0') → 0'
dbl(s(X)) → s(s(dbl(X)))
dbls(nil) → nil
dbls(cons(X, Y)) → cons(dbl(X), dbls(Y))
sel(0', cons(X, Y)) → X
sel(s(X), cons(Y, Z)) → sel(X, Z)
indx(nil, X) → nil
indx(cons(X, Y), Z) → cons(sel(X, Z), indx(Y, Z))
from(X) → cons(X, from(s(X)))
dbl1(0') → 01'
dbl1(s(X)) → s1(s1(dbl1(X)))
sel1(0', cons(X, Y)) → X
sel1(s(X), cons(Y, Z)) → sel1(X, Z)
quote(0') → 01'
quote(s(X)) → s1(quote(X))
quote(dbl(X)) → dbl1(X)
quote(sel(X, Y)) → sel1(X, Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
dbl,
dbls,
sel,
indx,
from,
dbl1,
sel1,
quoteThey will be analysed ascendingly in the following order:
dbl < dbls
sel < indx
dbl1 < quote
sel1 < quote
(6) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
dbl, dbls, sel, indx, from, dbl1, sel1, quote
They will be analysed ascendingly in the following order:
dbl < dbls
sel < indx
dbl1 < quote
sel1 < quote
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
dbl(
gen_0':s:01':s13_0(
n6_0)) →
gen_0':s:01':s13_0(
*(
2,
n6_0)), rt ∈ Ω(1 + n6
0)
Induction Base:
dbl(gen_0':s:01':s13_0(0)) →RΩ(1)
0'
Induction Step:
dbl(gen_0':s:01':s13_0(+(n6_0, 1))) →RΩ(1)
s(s(dbl(gen_0':s:01':s13_0(n6_0)))) →IH
s(s(gen_0':s:01':s13_0(*(2, c7_0))))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
dbls, sel, indx, from, dbl1, sel1, quote
They will be analysed ascendingly in the following order:
sel < indx
dbl1 < quote
sel1 < quote
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
dbls(
gen_nil:cons4_0(
n286_0)) →
gen_nil:cons4_0(
n286_0), rt ∈ Ω(1 + n286
0)
Induction Base:
dbls(gen_nil:cons4_0(0)) →RΩ(1)
nil
Induction Step:
dbls(gen_nil:cons4_0(+(n286_0, 1))) →RΩ(1)
cons(dbl(0'), dbls(gen_nil:cons4_0(n286_0))) →LΩ(1)
cons(gen_0':s:01':s13_0(*(2, 0)), dbls(gen_nil:cons4_0(n286_0))) →IH
cons(gen_0':s:01':s13_0(0), gen_nil:cons4_0(c287_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
sel, indx, from, dbl1, sel1, quote
They will be analysed ascendingly in the following order:
sel < indx
dbl1 < quote
sel1 < quote
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel(
gen_0':s:01':s13_0(
n644_0),
gen_nil:cons4_0(
+(
1,
n644_0))) →
gen_0':s:01':s13_0(
0), rt ∈ Ω(1 + n644
0)
Induction Base:
sel(gen_0':s:01':s13_0(0), gen_nil:cons4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
sel(gen_0':s:01':s13_0(+(n644_0, 1)), gen_nil:cons4_0(+(1, +(n644_0, 1)))) →RΩ(1)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) →IH
gen_0':s:01':s13_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
indx, from, dbl1, sel1, quote
They will be analysed ascendingly in the following order:
dbl1 < quote
sel1 < quote
(16) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
indx(
gen_nil:cons4_0(
n1016_0),
gen_nil:cons4_0(
1)) →
gen_nil:cons4_0(
n1016_0), rt ∈ Ω(1 + n1016
0)
Induction Base:
indx(gen_nil:cons4_0(0), gen_nil:cons4_0(1)) →RΩ(1)
nil
Induction Step:
indx(gen_nil:cons4_0(+(n1016_0, 1)), gen_nil:cons4_0(1)) →RΩ(1)
cons(sel(0', gen_nil:cons4_0(1)), indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1))) →LΩ(1)
cons(gen_0':s:01':s13_0(0), indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1))) →IH
cons(gen_0':s:01':s13_0(0), gen_nil:cons4_0(c1017_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(17) Complex Obligation (BEST)
(18) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n1016_0), rt ∈ Ω(1 + n10160)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
from, dbl1, sel1, quote
They will be analysed ascendingly in the following order:
dbl1 < quote
sel1 < quote
(19) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol from.
(20) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n1016_0), rt ∈ Ω(1 + n10160)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
dbl1, sel1, quote
They will be analysed ascendingly in the following order:
dbl1 < quote
sel1 < quote
(21) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol dbl1.
(22) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n1016_0), rt ∈ Ω(1 + n10160)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
sel1, quote
They will be analysed ascendingly in the following order:
sel1 < quote
(23) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
sel1(
gen_0':s:01':s13_0(
n2136_0),
gen_nil:cons4_0(
+(
1,
n2136_0))) →
gen_0':s:01':s13_0(
0), rt ∈ Ω(1 + n2136
0)
Induction Base:
sel1(gen_0':s:01':s13_0(0), gen_nil:cons4_0(+(1, 0))) →RΩ(1)
0'
Induction Step:
sel1(gen_0':s:01':s13_0(+(n2136_0, 1)), gen_nil:cons4_0(+(1, +(n2136_0, 1)))) →RΩ(1)
sel1(gen_0':s:01':s13_0(n2136_0), gen_nil:cons4_0(+(1, n2136_0))) →IH
gen_0':s:01':s13_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(24) Complex Obligation (BEST)
(25) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n1016_0), rt ∈ Ω(1 + n10160)
sel1(gen_0':s:01':s13_0(n2136_0), gen_nil:cons4_0(+(1, n2136_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n21360)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
The following defined symbols remain to be analysed:
quote
(26) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol quote.
(27) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n1016_0), rt ∈ Ω(1 + n10160)
sel1(gen_0':s:01':s13_0(n2136_0), gen_nil:cons4_0(+(1, n2136_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n21360)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(28) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(29) BOUNDS(n^1, INF)
(30) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n1016_0), rt ∈ Ω(1 + n10160)
sel1(gen_0':s:01':s13_0(n2136_0), gen_nil:cons4_0(+(1, n2136_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n21360)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(31) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(32) BOUNDS(n^1, INF)
(33) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
indx(gen_nil:cons4_0(n1016_0), gen_nil:cons4_0(1)) → gen_nil:cons4_0(n1016_0), rt ∈ Ω(1 + n10160)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(34) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(35) BOUNDS(n^1, INF)
(36) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
sel(gen_0':s:01':s13_0(n644_0), gen_nil:cons4_0(+(1, n644_0))) → gen_0':s:01':s13_0(0), rt ∈ Ω(1 + n6440)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(37) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(38) BOUNDS(n^1, INF)
(39) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
dbls(gen_nil:cons4_0(n286_0)) → gen_nil:cons4_0(n286_0), rt ∈ Ω(1 + n2860)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(40) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(41) BOUNDS(n^1, INF)
(42) Obligation:
TRS:
Rules:
dbl(
0') →
0'dbl(
s(
X)) →
s(
s(
dbl(
X)))
dbls(
nil) →
nildbls(
cons(
X,
Y)) →
cons(
dbl(
X),
dbls(
Y))
sel(
0',
cons(
X,
Y)) →
Xsel(
s(
X),
cons(
Y,
Z)) →
sel(
X,
Z)
indx(
nil,
X) →
nilindx(
cons(
X,
Y),
Z) →
cons(
sel(
X,
Z),
indx(
Y,
Z))
from(
X) →
cons(
X,
from(
s(
X)))
dbl1(
0') →
01'dbl1(
s(
X)) →
s1(
s1(
dbl1(
X)))
sel1(
0',
cons(
X,
Y)) →
Xsel1(
s(
X),
cons(
Y,
Z)) →
sel1(
X,
Z)
quote(
0') →
01'quote(
s(
X)) →
s1(
quote(
X))
quote(
dbl(
X)) →
dbl1(
X)
quote(
sel(
X,
Y)) →
sel1(
X,
Y)
Types:
dbl :: 0':s:01':s1 → 0':s:01':s1
0' :: 0':s:01':s1
s :: 0':s:01':s1 → 0':s:01':s1
dbls :: nil:cons → nil:cons
nil :: nil:cons
cons :: 0':s:01':s1 → nil:cons → nil:cons
sel :: 0':s:01':s1 → nil:cons → 0':s:01':s1
indx :: nil:cons → nil:cons → nil:cons
from :: 0':s:01':s1 → nil:cons
dbl1 :: 0':s:01':s1 → 0':s:01':s1
01' :: 0':s:01':s1
s1 :: 0':s:01':s1 → 0':s:01':s1
sel1 :: 0':s:01':s1 → nil:cons → 0':s:01':s1
quote :: 0':s:01':s1 → 0':s:01':s1
hole_0':s:01':s11_0 :: 0':s:01':s1
hole_nil:cons2_0 :: nil:cons
gen_0':s:01':s13_0 :: Nat → 0':s:01':s1
gen_nil:cons4_0 :: Nat → nil:cons
Lemmas:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
Generator Equations:
gen_0':s:01':s13_0(0) ⇔ 0'
gen_0':s:01':s13_0(+(x, 1)) ⇔ s(gen_0':s:01':s13_0(x))
gen_nil:cons4_0(0) ⇔ nil
gen_nil:cons4_0(+(x, 1)) ⇔ cons(0', gen_nil:cons4_0(x))
No more defined symbols left to analyse.
(43) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
dbl(gen_0':s:01':s13_0(n6_0)) → gen_0':s:01':s13_0(*(2, n6_0)), rt ∈ Ω(1 + n60)
(44) BOUNDS(n^1, INF)