(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(0) → true
f(1) → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(x)) →+ f(x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(0') → true
f(1') → false
f(s(x)) → f(x)
if(true, x, y) → x
if(false, x, y) → y
g(s(x), s(y)) → if(f(x), s(x), s(y))
g(x, c(y)) → g(x, g(s(c(y)), y))
Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
f < g
(8) Obligation:
TRS:
Rules:
f(
0') →
truef(
1') →
falsef(
s(
x)) →
f(
x)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yg(
s(
x),
s(
y)) →
if(
f(
x),
s(
x),
s(
y))
g(
x,
c(
y)) →
g(
x,
g(
s(
c(
y)),
y))
Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c
Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))
The following defined symbols remain to be analysed:
f, g
They will be analysed ascendingly in the following order:
f < g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_0':1':s:c3_0(
n5_0)) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
f(gen_0':1':s:c3_0(0)) →RΩ(1)
true
Induction Step:
f(gen_0':1':s:c3_0(+(n5_0, 1))) →RΩ(1)
f(gen_0':1':s:c3_0(n5_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
0') →
truef(
1') →
falsef(
s(
x)) →
f(
x)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yg(
s(
x),
s(
y)) →
if(
f(
x),
s(
x),
s(
y))
g(
x,
c(
y)) →
g(
x,
g(
s(
c(
y)),
y))
Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c
Lemmas:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))
The following defined symbols remain to be analysed:
g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
TRS:
Rules:
f(
0') →
truef(
1') →
falsef(
s(
x)) →
f(
x)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yg(
s(
x),
s(
y)) →
if(
f(
x),
s(
x),
s(
y))
g(
x,
c(
y)) →
g(
x,
g(
s(
c(
y)),
y))
Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c
Lemmas:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
0') →
truef(
1') →
falsef(
s(
x)) →
f(
x)
if(
true,
x,
y) →
xif(
false,
x,
y) →
yg(
s(
x),
s(
y)) →
if(
f(
x),
s(
x),
s(
y))
g(
x,
c(
y)) →
g(
x,
g(
s(
c(
y)),
y))
Types:
f :: 0':1':s:c → true:false
0' :: 0':1':s:c
true :: true:false
1' :: 0':1':s:c
false :: true:false
s :: 0':1':s:c → 0':1':s:c
if :: true:false → 0':1':s:c → 0':1':s:c → 0':1':s:c
g :: 0':1':s:c → 0':1':s:c → 0':1':s:c
c :: 0':1':s:c → 0':1':s:c
hole_true:false1_0 :: true:false
hole_0':1':s:c2_0 :: 0':1':s:c
gen_0':1':s:c3_0 :: Nat → 0':1':s:c
Lemmas:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':1':s:c3_0(0) ⇔ 0'
gen_0':1':s:c3_0(+(x, 1)) ⇔ s(gen_0':1':s:c3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_0':1':s:c3_0(n5_0)) → true, rt ∈ Ω(1 + n50)
(18) BOUNDS(n^1, INF)