(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
even(0) → true
even(s(0)) → false
even(s(s(x))) → even(x)
half(0) → 0
half(s(s(x))) → s(half(x))
plus(0, y) → y
plus(s(x), y) → s(plus(x, y))
times(0, y) → 0
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
even(0') → true
even(s(0')) → false
even(s(s(x))) → even(x)
half(0') → 0'
half(s(s(x))) → s(half(x))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
even(0') → true
even(s(0')) → false
even(s(s(x))) → even(x)
half(0') → 0'
half(s(s(x))) → s(half(x))
plus(0', y) → y
plus(s(x), y) → s(plus(x, y))
times(0', y) → 0'
times(s(x), y) → if_times(even(s(x)), s(x), y)
if_times(true, s(x), y) → plus(times(half(s(x)), y), times(half(s(x)), y))
if_times(false, s(x), y) → plus(y, times(x, y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
even,
half,
plus,
timesThey will be analysed ascendingly in the following order:
even < times
half < times
plus < times
(6) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
even, half, plus, times
They will be analysed ascendingly in the following order:
even < times
half < times
plus < times
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
even(
gen_0':s3_0(
*(
2,
n5_0))) →
true, rt ∈ Ω(1 + n5
0)
Induction Base:
even(gen_0':s3_0(*(2, 0))) →RΩ(1)
true
Induction Step:
even(gen_0':s3_0(*(2, +(n5_0, 1)))) →RΩ(1)
even(gen_0':s3_0(*(2, n5_0))) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
half, plus, times
They will be analysed ascendingly in the following order:
half < times
plus < times
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
half(
gen_0':s3_0(
*(
2,
n149_0))) →
gen_0':s3_0(
n149_0), rt ∈ Ω(1 + n149
0)
Induction Base:
half(gen_0':s3_0(*(2, 0))) →RΩ(1)
0'
Induction Step:
half(gen_0':s3_0(*(2, +(n149_0, 1)))) →RΩ(1)
s(half(gen_0':s3_0(*(2, n149_0)))) →IH
s(gen_0':s3_0(c150_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s3_0(*(2, n149_0))) → gen_0':s3_0(n149_0), rt ∈ Ω(1 + n1490)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
plus, times
They will be analysed ascendingly in the following order:
plus < times
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
plus(
gen_0':s3_0(
n355_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n355_0,
b)), rt ∈ Ω(1 + n355
0)
Induction Base:
plus(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
plus(gen_0':s3_0(+(n355_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(plus(gen_0':s3_0(n355_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c356_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s3_0(*(2, n149_0))) → gen_0':s3_0(n149_0), rt ∈ Ω(1 + n1490)
plus(gen_0':s3_0(n355_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n355_0, b)), rt ∈ Ω(1 + n3550)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
times
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol times.
(17) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s3_0(*(2, n149_0))) → gen_0':s3_0(n149_0), rt ∈ Ω(1 + n1490)
plus(gen_0':s3_0(n355_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n355_0, b)), rt ∈ Ω(1 + n3550)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s3_0(*(2, n149_0))) → gen_0':s3_0(n149_0), rt ∈ Ω(1 + n1490)
plus(gen_0':s3_0(n355_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n355_0, b)), rt ∈ Ω(1 + n3550)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
half(gen_0':s3_0(*(2, n149_0))) → gen_0':s3_0(n149_0), rt ∈ Ω(1 + n1490)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
even(
0') →
trueeven(
s(
0')) →
falseeven(
s(
s(
x))) →
even(
x)
half(
0') →
0'half(
s(
s(
x))) →
s(
half(
x))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
x,
y))
times(
0',
y) →
0'times(
s(
x),
y) →
if_times(
even(
s(
x)),
s(
x),
y)
if_times(
true,
s(
x),
y) →
plus(
times(
half(
s(
x)),
y),
times(
half(
s(
x)),
y))
if_times(
false,
s(
x),
y) →
plus(
y,
times(
x,
y))
Types:
even :: 0':s → true:false
0' :: 0':s
true :: true:false
s :: 0':s → 0':s
false :: true:false
half :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
times :: 0':s → 0':s → 0':s
if_times :: true:false → 0':s → 0':s → 0':s
hole_true:false1_0 :: true:false
hole_0':s2_0 :: 0':s
gen_0':s3_0 :: Nat → 0':s
Lemmas:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
even(gen_0':s3_0(*(2, n5_0))) → true, rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)