(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0)) → g(f(s(0)))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
f(s(x)) →+ f(x)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0')) → g(f(s(0')))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
f(f(x)) → f(x)
f(s(x)) → f(x)
g(s(0')) → g(f(s(0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f,
gThey will be analysed ascendingly in the following order:
f < g
(8) Obligation:
TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
f, g
They will be analysed ascendingly in the following order:
f < g
(9) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_s:0'3_0(
+(
1,
n5_0))) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_s:0'3_0(+(1, 0)))
Induction Step:
f(gen_s:0'3_0(+(1, +(n5_0, 1)))) →RΩ(1)
f(gen_s:0'3_0(+(1, n5_0))) →IH
*4_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(10) Complex Obligation (BEST)
(11) Obligation:
TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
The following defined symbols remain to be analysed:
g
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol g.
(13) Obligation:
TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(14) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(15) BOUNDS(n^1, INF)
(16) Obligation:
TRS:
Rules:
f(
f(
x)) →
f(
x)
f(
s(
x)) →
f(
x)
g(
s(
0')) →
g(
f(
s(
0')))
Types:
f :: s:0' → s:0'
s :: s:0' → s:0'
g :: s:0' → g
0' :: s:0'
hole_s:0'1_0 :: s:0'
hole_g2_0 :: g
gen_s:0'3_0 :: Nat → s:0'
Lemmas:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_s:0'3_0(0) ⇔ 0'
gen_s:0'3_0(+(x, 1)) ⇔ s(gen_s:0'3_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_s:0'3_0(+(1, n5_0))) → *4_0, rt ∈ Ω(n50)
(18) BOUNDS(n^1, INF)