(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2)))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2')))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1'))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
D(t) → s(h)
D(constant) → h
D(b(x, y)) → b(D(x), D(y))
D(c(x, y)) → b(c(y, D(x)), c(x, D(y)))
D(m(x, y)) → m(D(x), D(y))
D(opp(x)) → opp(D(x))
D(div(x, y)) → m(div(D(x), y), div(c(x, D(y)), pow(y, 2')))
D(ln(x)) → div(D(x), x)
D(pow(x, y)) → b(c(c(y, pow(x, m(y, 1'))), D(x)), c(c(pow(x, y), ln(x)), D(y)))
b(h, x) → x
b(x, h) → x
b(s(x), s(y)) → s(s(b(x, y)))
b(b(x, y), z) → b(x, b(y, z))
Types:
D :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
t :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
s :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
h :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
constant :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
b :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
c :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
m :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
opp :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
div :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
pow :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
2' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
ln :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
1' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
hole_t:h:s:constant:c:m:opp:div:2':pow:ln:1'1_0 :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0 :: Nat → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
D,
bThey will be analysed ascendingly in the following order:
b < D
(6) Obligation:
TRS:
Rules:
D(
t) →
s(
h)
D(
constant) →
hD(
b(
x,
y)) →
b(
D(
x),
D(
y))
D(
c(
x,
y)) →
b(
c(
y,
D(
x)),
c(
x,
D(
y)))
D(
m(
x,
y)) →
m(
D(
x),
D(
y))
D(
opp(
x)) →
opp(
D(
x))
D(
div(
x,
y)) →
m(
div(
D(
x),
y),
div(
c(
x,
D(
y)),
pow(
y,
2')))
D(
ln(
x)) →
div(
D(
x),
x)
D(
pow(
x,
y)) →
b(
c(
c(
y,
pow(
x,
m(
y,
1'))),
D(
x)),
c(
c(
pow(
x,
y),
ln(
x)),
D(
y)))
b(
h,
x) →
xb(
x,
h) →
xb(
s(
x),
s(
y)) →
s(
s(
b(
x,
y)))
b(
b(
x,
y),
z) →
b(
x,
b(
y,
z))
Types:
D :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
t :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
s :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
h :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
constant :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
b :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
c :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
m :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
opp :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
div :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
pow :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
2' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
ln :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
1' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
hole_t:h:s:constant:c:m:opp:div:2':pow:ln:1'1_0 :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0 :: Nat → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
Generator Equations:
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(0) ⇔ t
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(x, 1)) ⇔ s(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(x))
The following defined symbols remain to be analysed:
b, D
They will be analysed ascendingly in the following order:
b < D
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
b(
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(
+(
1,
n4_0)),
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(
+(
1,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, 0)), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, 0)))
Induction Step:
b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, +(n4_0, 1))), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, +(n4_0, 1)))) →RΩ(1)
s(s(b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0)), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0))))) →IH
s(s(*3_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
D(
t) →
s(
h)
D(
constant) →
hD(
b(
x,
y)) →
b(
D(
x),
D(
y))
D(
c(
x,
y)) →
b(
c(
y,
D(
x)),
c(
x,
D(
y)))
D(
m(
x,
y)) →
m(
D(
x),
D(
y))
D(
opp(
x)) →
opp(
D(
x))
D(
div(
x,
y)) →
m(
div(
D(
x),
y),
div(
c(
x,
D(
y)),
pow(
y,
2')))
D(
ln(
x)) →
div(
D(
x),
x)
D(
pow(
x,
y)) →
b(
c(
c(
y,
pow(
x,
m(
y,
1'))),
D(
x)),
c(
c(
pow(
x,
y),
ln(
x)),
D(
y)))
b(
h,
x) →
xb(
x,
h) →
xb(
s(
x),
s(
y)) →
s(
s(
b(
x,
y)))
b(
b(
x,
y),
z) →
b(
x,
b(
y,
z))
Types:
D :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
t :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
s :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
h :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
constant :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
b :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
c :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
m :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
opp :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
div :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
pow :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
2' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
ln :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
1' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
hole_t:h:s:constant:c:m:opp:div:2':pow:ln:1'1_0 :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0 :: Nat → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
Lemmas:
b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0)), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(0) ⇔ t
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(x, 1)) ⇔ s(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(x))
The following defined symbols remain to be analysed:
D
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol D.
(11) Obligation:
TRS:
Rules:
D(
t) →
s(
h)
D(
constant) →
hD(
b(
x,
y)) →
b(
D(
x),
D(
y))
D(
c(
x,
y)) →
b(
c(
y,
D(
x)),
c(
x,
D(
y)))
D(
m(
x,
y)) →
m(
D(
x),
D(
y))
D(
opp(
x)) →
opp(
D(
x))
D(
div(
x,
y)) →
m(
div(
D(
x),
y),
div(
c(
x,
D(
y)),
pow(
y,
2')))
D(
ln(
x)) →
div(
D(
x),
x)
D(
pow(
x,
y)) →
b(
c(
c(
y,
pow(
x,
m(
y,
1'))),
D(
x)),
c(
c(
pow(
x,
y),
ln(
x)),
D(
y)))
b(
h,
x) →
xb(
x,
h) →
xb(
s(
x),
s(
y)) →
s(
s(
b(
x,
y)))
b(
b(
x,
y),
z) →
b(
x,
b(
y,
z))
Types:
D :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
t :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
s :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
h :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
constant :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
b :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
c :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
m :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
opp :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
div :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
pow :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
2' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
ln :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
1' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
hole_t:h:s:constant:c:m:opp:div:2':pow:ln:1'1_0 :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0 :: Nat → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
Lemmas:
b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0)), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(0) ⇔ t
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(x, 1)) ⇔ s(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(x))
No more defined symbols left to analyse.
(12) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0)), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(13) BOUNDS(n^1, INF)
(14) Obligation:
TRS:
Rules:
D(
t) →
s(
h)
D(
constant) →
hD(
b(
x,
y)) →
b(
D(
x),
D(
y))
D(
c(
x,
y)) →
b(
c(
y,
D(
x)),
c(
x,
D(
y)))
D(
m(
x,
y)) →
m(
D(
x),
D(
y))
D(
opp(
x)) →
opp(
D(
x))
D(
div(
x,
y)) →
m(
div(
D(
x),
y),
div(
c(
x,
D(
y)),
pow(
y,
2')))
D(
ln(
x)) →
div(
D(
x),
x)
D(
pow(
x,
y)) →
b(
c(
c(
y,
pow(
x,
m(
y,
1'))),
D(
x)),
c(
c(
pow(
x,
y),
ln(
x)),
D(
y)))
b(
h,
x) →
xb(
x,
h) →
xb(
s(
x),
s(
y)) →
s(
s(
b(
x,
y)))
b(
b(
x,
y),
z) →
b(
x,
b(
y,
z))
Types:
D :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
t :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
s :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
h :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
constant :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
b :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
c :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
m :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
opp :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
div :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
pow :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
2' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
ln :: t:h:s:constant:c:m:opp:div:2':pow:ln:1' → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
1' :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
hole_t:h:s:constant:c:m:opp:div:2':pow:ln:1'1_0 :: t:h:s:constant:c:m:opp:div:2':pow:ln:1'
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0 :: Nat → t:h:s:constant:c:m:opp:div:2':pow:ln:1'
Lemmas:
b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0)), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(0) ⇔ t
gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(x, 1)) ⇔ s(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(x))
No more defined symbols left to analyse.
(15) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
b(gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0)), gen_t:h:s:constant:c:m:opp:div:2':pow:ln:1'2_0(+(1, n4_0))) → *3_0, rt ∈ Ω(n40)
(16) BOUNDS(n^1, INF)