(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
+(0, y) → y
+(s(x), y) → s(+(x, y))
*(x, 0) → 0
*(x, s(y)) → +(x, *(x, y))
f(s(x)) → f(-(+(*(s(x), s(x)), *(s(x), s(s(s(0))))), *(s(s(x)), s(s(x)))))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(x, *'(x, y))
f(s(x)) → f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x)))))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
+'(0', y) → y
+'(s(x), y) → s(+'(x, y))
*'(x, 0') → 0'
*'(x, s(y)) → +'(x, *'(x, y))
f(s(x)) → f(-(+'(*'(s(x), s(x)), *'(s(x), s(s(s(0'))))), *'(s(s(x)), s(s(x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
-,
+',
*',
fThey will be analysed ascendingly in the following order:
- < f
+' < *'
+' < f
*' < f
(6) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, +', *', f
They will be analysed ascendingly in the following order:
- < f
+' < *'
+' < f
*' < f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n5
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
+', *', f
They will be analysed ascendingly in the following order:
+' < *'
+' < f
*' < f
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
+'(
gen_0':s3_0(
n237_0),
gen_0':s3_0(
b)) →
gen_0':s3_0(
+(
n237_0,
b)), rt ∈ Ω(1 + n237
0)
Induction Base:
+'(gen_0':s3_0(0), gen_0':s3_0(b)) →RΩ(1)
gen_0':s3_0(b)
Induction Step:
+'(gen_0':s3_0(+(n237_0, 1)), gen_0':s3_0(b)) →RΩ(1)
s(+'(gen_0':s3_0(n237_0), gen_0':s3_0(b))) →IH
s(gen_0':s3_0(+(b, c238_0)))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
*', f
They will be analysed ascendingly in the following order:
*' < f
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
*'(
gen_0':s3_0(
a),
gen_0':s3_0(
n708_0)) →
gen_0':s3_0(
*(
n708_0,
a)), rt ∈ Ω(1 + a·n708
0 + n708
0)
Induction Base:
*'(gen_0':s3_0(a), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
*'(gen_0':s3_0(a), gen_0':s3_0(+(n708_0, 1))) →RΩ(1)
+'(gen_0':s3_0(a), *'(gen_0':s3_0(a), gen_0':s3_0(n708_0))) →IH
+'(gen_0':s3_0(a), gen_0':s3_0(*(c709_0, a))) →LΩ(1 + a)
gen_0':s3_0(+(a, *(n708_0, a)))
We have rt ∈ Ω(n2) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n2).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
f
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol f.
(17) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
(19) BOUNDS(n^2, INF)
(20) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n2) was proven with the following lemma:
*'(gen_0':s3_0(a), gen_0':s3_0(n708_0)) → gen_0':s3_0(*(n708_0, a)), rt ∈ Ω(1 + a·n7080 + n7080)
(22) BOUNDS(n^2, INF)
(23) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
+'(gen_0':s3_0(n237_0), gen_0':s3_0(b)) → gen_0':s3_0(+(n237_0, b)), rt ∈ Ω(1 + n2370)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
+'(
0',
y) →
y+'(
s(
x),
y) →
s(
+'(
x,
y))
*'(
x,
0') →
0'*'(
x,
s(
y)) →
+'(
x,
*'(
x,
y))
f(
s(
x)) →
f(
-(
+'(
*'(
s(
x),
s(
x)),
*'(
s(
x),
s(
s(
s(
0'))))),
*'(
s(
s(
x)),
s(
s(
x)))))
Types:
- :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
+' :: 0':s → 0':s → 0':s
*' :: 0':s → 0':s → 0':s
f :: 0':s → f
hole_0':s1_0 :: 0':s
hole_f2_0 :: f
gen_0':s3_0 :: Nat → 0':s
Lemmas:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
-(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)