(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
min(x, 0) → 0
min(0, y) → 0
min(s(x), s(y)) → s(min(x, y))
max(x, 0) → x
max(0, y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0) → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
min(x, 0') → 0'
min(0', y) → 0'
min(s(x), s(y)) → s(min(x, y))
max(x, 0') → x
max(0', y) → y
max(s(x), s(y)) → s(max(x, y))
-(x, 0') → x
-(s(x), s(y)) → -(x, y)
gcd(s(x), s(y)) → gcd(-(s(max(x, y)), s(min(x, y))), s(min(x, y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
min,
max,
-,
gcdThey will be analysed ascendingly in the following order:
min < gcd
max < gcd
- < gcd
(6) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
min, max, -, gcd
They will be analysed ascendingly in the following order:
min < gcd
max < gcd
- < gcd
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
min(
gen_0':s3_0(
n5_0),
gen_0':s3_0(
n5_0)) →
gen_0':s3_0(
n5_0), rt ∈ Ω(1 + n5
0)
Induction Base:
min(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
0'
Induction Step:
min(gen_0':s3_0(+(n5_0, 1)), gen_0':s3_0(+(n5_0, 1))) →RΩ(1)
s(min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0))) →IH
s(gen_0':s3_0(c6_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
max, -, gcd
They will be analysed ascendingly in the following order:
max < gcd
- < gcd
(10) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
max(
gen_0':s3_0(
n299_0),
gen_0':s3_0(
n299_0)) →
gen_0':s3_0(
n299_0), rt ∈ Ω(1 + n299
0)
Induction Base:
max(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
max(gen_0':s3_0(+(n299_0, 1)), gen_0':s3_0(+(n299_0, 1))) →RΩ(1)
s(max(gen_0':s3_0(n299_0), gen_0':s3_0(n299_0))) →IH
s(gen_0':s3_0(c300_0))
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(11) Complex Obligation (BEST)
(12) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n299_0), gen_0':s3_0(n299_0)) → gen_0':s3_0(n299_0), rt ∈ Ω(1 + n2990)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
-, gcd
They will be analysed ascendingly in the following order:
- < gcd
(13) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
-(
gen_0':s3_0(
n669_0),
gen_0':s3_0(
n669_0)) →
gen_0':s3_0(
0), rt ∈ Ω(1 + n669
0)
Induction Base:
-(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
gen_0':s3_0(0)
Induction Step:
-(gen_0':s3_0(+(n669_0, 1)), gen_0':s3_0(+(n669_0, 1))) →RΩ(1)
-(gen_0':s3_0(n669_0), gen_0':s3_0(n669_0)) →IH
gen_0':s3_0(0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(14) Complex Obligation (BEST)
(15) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n299_0), gen_0':s3_0(n299_0)) → gen_0':s3_0(n299_0), rt ∈ Ω(1 + n2990)
-(gen_0':s3_0(n669_0), gen_0':s3_0(n669_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n6690)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
gcd
(16) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol gcd.
(17) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n299_0), gen_0':s3_0(n299_0)) → gen_0':s3_0(n299_0), rt ∈ Ω(1 + n2990)
-(gen_0':s3_0(n669_0), gen_0':s3_0(n669_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n6690)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(18) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(19) BOUNDS(n^1, INF)
(20) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n299_0), gen_0':s3_0(n299_0)) → gen_0':s3_0(n299_0), rt ∈ Ω(1 + n2990)
-(gen_0':s3_0(n669_0), gen_0':s3_0(n669_0)) → gen_0':s3_0(0), rt ∈ Ω(1 + n6690)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(21) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(22) BOUNDS(n^1, INF)
(23) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
max(gen_0':s3_0(n299_0), gen_0':s3_0(n299_0)) → gen_0':s3_0(n299_0), rt ∈ Ω(1 + n2990)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(24) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(25) BOUNDS(n^1, INF)
(26) Obligation:
TRS:
Rules:
min(
x,
0') →
0'min(
0',
y) →
0'min(
s(
x),
s(
y)) →
s(
min(
x,
y))
max(
x,
0') →
xmax(
0',
y) →
ymax(
s(
x),
s(
y)) →
s(
max(
x,
y))
-(
x,
0') →
x-(
s(
x),
s(
y)) →
-(
x,
y)
gcd(
s(
x),
s(
y)) →
gcd(
-(
s(
max(
x,
y)),
s(
min(
x,
y))),
s(
min(
x,
y)))
Types:
min :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
max :: 0':s → 0':s → 0':s
- :: 0':s → 0':s → 0':s
gcd :: 0':s → 0':s → gcd
hole_0':s1_0 :: 0':s
hole_gcd2_0 :: gcd
gen_0':s3_0 :: Nat → 0':s
Lemmas:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(27) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
min(gen_0':s3_0(n5_0), gen_0':s3_0(n5_0)) → gen_0':s3_0(n5_0), rt ∈ Ω(1 + n50)
(28) BOUNDS(n^1, INF)