(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
minus(x, 0) → x
minus(0, y) → 0
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0) → s(s(0))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0, y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0))))
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
minus(x, 0') → x
minus(0', y) → 0'
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0') → s(s(0'))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0', y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0'))))
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
minus(x, 0') → x
minus(0', y) → 0'
minus(s(x), s(y)) → minus(p(s(x)), p(s(y)))
minus(x, plus(y, z)) → minus(minus(x, y), z)
p(s(s(x))) → s(p(s(x)))
p(0') → s(s(0'))
div(s(x), s(y)) → s(div(minus(x, y), s(y)))
div(plus(x, y), z) → plus(div(x, z), div(y, z))
plus(0', y) → y
plus(s(x), y) → s(plus(y, minus(s(x), s(0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
minus,
p,
div,
plusThey will be analysed ascendingly in the following order:
p < minus
minus < div
minus < plus
plus < div
(6) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
p(
s(
x)),
p(
s(
y)))
minus(
x,
plus(
y,
z)) →
minus(
minus(
x,
y),
z)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
0') →
s(
s(
0'))
div(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
plus(
x,
y),
z) →
plus(
div(
x,
z),
div(
y,
z))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
y,
minus(
s(
x),
s(
0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
p, minus, div, plus
They will be analysed ascendingly in the following order:
p < minus
minus < div
minus < plus
plus < div
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
p(
gen_0':s2_0(
+(
2,
n4_0))) →
*3_0, rt ∈ Ω(n4
0)
Induction Base:
p(gen_0':s2_0(+(2, 0)))
Induction Step:
p(gen_0':s2_0(+(2, +(n4_0, 1)))) →RΩ(1)
s(p(s(gen_0':s2_0(+(1, n4_0))))) →IH
s(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
p(
s(
x)),
p(
s(
y)))
minus(
x,
plus(
y,
z)) →
minus(
minus(
x,
y),
z)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
0') →
s(
s(
0'))
div(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
plus(
x,
y),
z) →
plus(
div(
x,
z),
div(
y,
z))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
y,
minus(
s(
x),
s(
0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
minus, div, plus
They will be analysed ascendingly in the following order:
minus < div
minus < plus
plus < div
(10) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(11) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
p(
s(
x)),
p(
s(
y)))
minus(
x,
plus(
y,
z)) →
minus(
minus(
x,
y),
z)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
0') →
s(
s(
0'))
div(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
plus(
x,
y),
z) →
plus(
div(
x,
z),
div(
y,
z))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
y,
minus(
s(
x),
s(
0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
plus, div
They will be analysed ascendingly in the following order:
plus < div
(12) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol plus.
(13) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
p(
s(
x)),
p(
s(
y)))
minus(
x,
plus(
y,
z)) →
minus(
minus(
x,
y),
z)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
0') →
s(
s(
0'))
div(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
plus(
x,
y),
z) →
plus(
div(
x,
z),
div(
y,
z))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
y,
minus(
s(
x),
s(
0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
The following defined symbols remain to be analysed:
div
(14) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
div(
gen_0':s2_0(
+(
1,
n932_0)),
gen_0':s2_0(
1)) →
*3_0, rt ∈ Ω(n932
0)
Induction Base:
div(gen_0':s2_0(+(1, 0)), gen_0':s2_0(1))
Induction Step:
div(gen_0':s2_0(+(1, +(n932_0, 1))), gen_0':s2_0(1)) →RΩ(1)
s(div(minus(gen_0':s2_0(+(1, n932_0)), gen_0':s2_0(0)), s(gen_0':s2_0(0)))) →RΩ(1)
s(div(gen_0':s2_0(+(1, n932_0)), s(gen_0':s2_0(0)))) →IH
s(*3_0)
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(15) Complex Obligation (BEST)
(16) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
p(
s(
x)),
p(
s(
y)))
minus(
x,
plus(
y,
z)) →
minus(
minus(
x,
y),
z)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
0') →
s(
s(
0'))
div(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
plus(
x,
y),
z) →
plus(
div(
x,
z),
div(
y,
z))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
y,
minus(
s(
x),
s(
0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
div(gen_0':s2_0(+(1, n932_0)), gen_0':s2_0(1)) → *3_0, rt ∈ Ω(n9320)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(17) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
(18) BOUNDS(n^1, INF)
(19) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
p(
s(
x)),
p(
s(
y)))
minus(
x,
plus(
y,
z)) →
minus(
minus(
x,
y),
z)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
0') →
s(
s(
0'))
div(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
plus(
x,
y),
z) →
plus(
div(
x,
z),
div(
y,
z))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
y,
minus(
s(
x),
s(
0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
div(gen_0':s2_0(+(1, n932_0)), gen_0':s2_0(1)) → *3_0, rt ∈ Ω(n9320)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(20) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
(21) BOUNDS(n^1, INF)
(22) Obligation:
TRS:
Rules:
minus(
x,
0') →
xminus(
0',
y) →
0'minus(
s(
x),
s(
y)) →
minus(
p(
s(
x)),
p(
s(
y)))
minus(
x,
plus(
y,
z)) →
minus(
minus(
x,
y),
z)
p(
s(
s(
x))) →
s(
p(
s(
x)))
p(
0') →
s(
s(
0'))
div(
s(
x),
s(
y)) →
s(
div(
minus(
x,
y),
s(
y)))
div(
plus(
x,
y),
z) →
plus(
div(
x,
z),
div(
y,
z))
plus(
0',
y) →
yplus(
s(
x),
y) →
s(
plus(
y,
minus(
s(
x),
s(
0'))))
Types:
minus :: 0':s → 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
p :: 0':s → 0':s
plus :: 0':s → 0':s → 0':s
div :: 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
gen_0':s2_0 :: Nat → 0':s
Lemmas:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
Generator Equations:
gen_0':s2_0(0) ⇔ 0'
gen_0':s2_0(+(x, 1)) ⇔ s(gen_0':s2_0(x))
No more defined symbols left to analyse.
(23) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
p(gen_0':s2_0(+(2, n4_0))) → *3_0, rt ∈ Ω(n40)
(24) BOUNDS(n^1, INF)