(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
p(0) → s(s(0))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0, y) → true
le(s(x), 0) → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0
if(false, x, y) → s(minus(p(x), y))
Rewrite Strategy: FULL
(1) DecreasingLoopProof (EQUIVALENT transformation)
The following loop(s) give(s) rise to the lower bound Ω(n1):
The rewrite sequence
le(s(x), s(y)) →+ le(x, y)
gives rise to a decreasing loop by considering the right hand sides subterm at position [].
The pumping substitution is [x / s(x), y / s(y)].
The result substitution is [ ].
(2) BOUNDS(n^1, INF)
(3) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(4) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
p(0') → s(s(0'))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0'
if(false, x, y) → s(minus(p(x), y))
S is empty.
Rewrite Strategy: FULL
(5) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(6) Obligation:
TRS:
Rules:
p(0') → s(s(0'))
p(s(x)) → x
p(p(s(x))) → p(x)
le(p(s(x)), x) → le(x, x)
le(0', y) → true
le(s(x), 0') → false
le(s(x), s(y)) → le(x, y)
minus(x, y) → if(le(x, y), x, y)
if(true, x, y) → 0'
if(false, x, y) → s(minus(p(x), y))
Types:
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
(7) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
p,
le,
minusThey will be analysed ascendingly in the following order:
p < minus
le < minus
(8) Obligation:
TRS:
Rules:
p(
0') →
s(
s(
0'))
p(
s(
x)) →
xp(
p(
s(
x))) →
p(
x)
le(
p(
s(
x)),
x) →
le(
x,
x)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
y) →
if(
le(
x,
y),
x,
y)
if(
true,
x,
y) →
0'if(
false,
x,
y) →
s(
minus(
p(
x),
y))
Types:
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
p, le, minus
They will be analysed ascendingly in the following order:
p < minus
le < minus
(9) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol p.
(10) Obligation:
TRS:
Rules:
p(
0') →
s(
s(
0'))
p(
s(
x)) →
xp(
p(
s(
x))) →
p(
x)
le(
p(
s(
x)),
x) →
le(
x,
x)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
y) →
if(
le(
x,
y),
x,
y)
if(
true,
x,
y) →
0'if(
false,
x,
y) →
s(
minus(
p(
x),
y))
Types:
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
le, minus
They will be analysed ascendingly in the following order:
le < minus
(11) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
le(
gen_0':s3_0(
n17_0),
gen_0':s3_0(
n17_0)) →
true, rt ∈ Ω(1 + n17
0)
Induction Base:
le(gen_0':s3_0(0), gen_0':s3_0(0)) →RΩ(1)
true
Induction Step:
le(gen_0':s3_0(+(n17_0, 1)), gen_0':s3_0(+(n17_0, 1))) →RΩ(1)
le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) →IH
true
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(12) Complex Obligation (BEST)
(13) Obligation:
TRS:
Rules:
p(
0') →
s(
s(
0'))
p(
s(
x)) →
xp(
p(
s(
x))) →
p(
x)
le(
p(
s(
x)),
x) →
le(
x,
x)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
y) →
if(
le(
x,
y),
x,
y)
if(
true,
x,
y) →
0'if(
false,
x,
y) →
s(
minus(
p(
x),
y))
Types:
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) → true, rt ∈ Ω(1 + n170)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
The following defined symbols remain to be analysed:
minus
(14) NoRewriteLemmaProof (LOWER BOUND(ID) transformation)
Could not prove a rewrite lemma for the defined symbol minus.
(15) Obligation:
TRS:
Rules:
p(
0') →
s(
s(
0'))
p(
s(
x)) →
xp(
p(
s(
x))) →
p(
x)
le(
p(
s(
x)),
x) →
le(
x,
x)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
y) →
if(
le(
x,
y),
x,
y)
if(
true,
x,
y) →
0'if(
false,
x,
y) →
s(
minus(
p(
x),
y))
Types:
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) → true, rt ∈ Ω(1 + n170)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(16) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) → true, rt ∈ Ω(1 + n170)
(17) BOUNDS(n^1, INF)
(18) Obligation:
TRS:
Rules:
p(
0') →
s(
s(
0'))
p(
s(
x)) →
xp(
p(
s(
x))) →
p(
x)
le(
p(
s(
x)),
x) →
le(
x,
x)
le(
0',
y) →
truele(
s(
x),
0') →
falsele(
s(
x),
s(
y)) →
le(
x,
y)
minus(
x,
y) →
if(
le(
x,
y),
x,
y)
if(
true,
x,
y) →
0'if(
false,
x,
y) →
s(
minus(
p(
x),
y))
Types:
p :: 0':s → 0':s
0' :: 0':s
s :: 0':s → 0':s
le :: 0':s → 0':s → true:false
true :: true:false
false :: true:false
minus :: 0':s → 0':s → 0':s
if :: true:false → 0':s → 0':s → 0':s
hole_0':s1_0 :: 0':s
hole_true:false2_0 :: true:false
gen_0':s3_0 :: Nat → 0':s
Lemmas:
le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) → true, rt ∈ Ω(1 + n170)
Generator Equations:
gen_0':s3_0(0) ⇔ 0'
gen_0':s3_0(+(x, 1)) ⇔ s(gen_0':s3_0(x))
No more defined symbols left to analyse.
(19) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
le(gen_0':s3_0(n17_0), gen_0':s3_0(n17_0)) → true, rt ∈ Ω(1 + n170)
(20) BOUNDS(n^1, INF)