*** 1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),d'()))
f(g(i(a(),b(),b'()),c()),d()) -> if(e(),f(.(b(),c()),d'()),f(.(b'(),c()),d'()))
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3}
Obligation:
Full
basic terms: {f}/{.,a,b,b',c,d,d',e,g,h,i,if}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),d'()))
f(g(i(a(),b(),b'()),c()),d()) -> if(e(),f(.(b(),c()),d'()),f(.(b'(),c()),d'()))
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3}
Obligation:
Innermost
basic terms: {f}/{.,a,b,b',c,d,d',e,g,h,i,if}
Applied Processor:
DependencyPairs {dpKind_ = DT}
Proof:
We add the following dependency tuples:
Strict DPs
f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'()))
f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'()))
Weak DPs
and mark the set of starting terms.
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'()))
f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'()))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),d'()))
f(g(i(a(),b(),b'()),c()),d()) -> if(e(),f(.(b(),c()),d'()),f(.(b'(),c()),d'()))
Signature:
{f/2,f#/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3,c_1/2,c_2/2}
Obligation:
Innermost
basic terms: {f#}/{.,a,b,b',c,d,d',e,g,h,i,if}
Applied Processor:
UsableRules
Proof:
We replace rewrite rules by usable rules:
f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'()))
f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'()))
*** 1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'()))
f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'()))
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2,f#/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3,c_1/2,c_2/2}
Obligation:
Innermost
basic terms: {f#}/{.,a,b,b',c,d,d',e,g,h,i,if}
Applied Processor:
Trivial
Proof:
Consider the dependency graph
1:S:f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'()))
2:S:f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'()))
The dependency graph contains no loops, we remove all dependency pairs.
*** 1.1.1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/2,f#/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3,c_1/2,c_2/2}
Obligation:
Innermost
basic terms: {f#}/{.,a,b,b',c,d,d',e,g,h,i,if}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).