*** 1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),d'())) f(g(i(a(),b(),b'()),c()),d()) -> if(e(),f(.(b(),c()),d'()),f(.(b'(),c()),d'())) Weak DP Rules: Weak TRS Rules: Signature: {f/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3} Obligation: Full basic terms: {f}/{.,a,b,b',c,d,d',e,g,h,i,if} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),d'())) f(g(i(a(),b(),b'()),c()),d()) -> if(e(),f(.(b(),c()),d'()),f(.(b'(),c()),d'())) Weak DP Rules: Weak TRS Rules: Signature: {f/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3} Obligation: Innermost basic terms: {f}/{.,a,b,b',c,d,d',e,g,h,i,if} Applied Processor: DependencyPairs {dpKind_ = DT} Proof: We add the following dependency tuples: Strict DPs f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'())) f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'())) Weak DPs and mark the set of starting terms. *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'())) f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'())) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(g(h(a(),b()),c()),d()) -> if(e(),f(.(b(),g(h(a(),b()),c())),d()),f(c(),d'())) f(g(i(a(),b(),b'()),c()),d()) -> if(e(),f(.(b(),c()),d'()),f(.(b'(),c()),d'())) Signature: {f/2,f#/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3,c_1/2,c_2/2} Obligation: Innermost basic terms: {f#}/{.,a,b,b',c,d,d',e,g,h,i,if} Applied Processor: UsableRules Proof: We replace rewrite rules by usable rules: f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'())) f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'())) *** 1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'())) f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'())) Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,f#/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3,c_1/2,c_2/2} Obligation: Innermost basic terms: {f#}/{.,a,b,b',c,d,d',e,g,h,i,if} Applied Processor: Trivial Proof: Consider the dependency graph 1:S:f#(g(h(a(),b()),c()),d()) -> c_1(f#(.(b(),g(h(a(),b()),c())),d()),f#(c(),d'())) 2:S:f#(g(i(a(),b(),b'()),c()),d()) -> c_2(f#(.(b(),c()),d'()),f#(.(b'(),c()),d'())) The dependency graph contains no loops, we remove all dependency pairs. *** 1.1.1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: Signature: {f/2,f#/2} / {./2,a/0,b/0,b'/0,c/0,d/0,d'/0,e/0,g/2,h/2,i/3,if/3,c_1/2,c_2/2} Obligation: Innermost basic terms: {f#}/{.,a,b,b',c,d,d',e,g,h,i,if} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).