(0) Obligation:
Runtime Complexity TRS:
The TRS R consists of the following rules:
f(x, x) → a
f(g(x), y) → f(x, y)
Rewrite Strategy: FULL
(1) RenamingProof (EQUIVALENT transformation)
Renamed function symbols to avoid clashes with predefined symbol.
(2) Obligation:
Runtime Complexity Relative TRS:
The TRS R consists of the following rules:
f(x, x) → a
f(g(x), y) → f(x, y)
S is empty.
Rewrite Strategy: FULL
(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)
Infered types.
(4) Obligation:
TRS:
Rules:
f(x, x) → a
f(g(x), y) → f(x, y)
Types:
f :: g → g → a
a :: a
g :: g → g
hole_a1_0 :: a
hole_g2_0 :: g
gen_g3_0 :: Nat → g
(5) OrderProof (LOWER BOUND(ID) transformation)
Heuristically decided to analyse the following defined symbols:
f
(6) Obligation:
TRS:
Rules:
f(
x,
x) →
af(
g(
x),
y) →
f(
x,
y)
Types:
f :: g → g → a
a :: a
g :: g → g
hole_a1_0 :: a
hole_g2_0 :: g
gen_g3_0 :: Nat → g
Generator Equations:
gen_g3_0(0) ⇔ hole_g2_0
gen_g3_0(+(x, 1)) ⇔ g(gen_g3_0(x))
The following defined symbols remain to be analysed:
f
(7) RewriteLemmaProof (LOWER BOUND(ID) transformation)
Proved the following rewrite lemma:
f(
gen_g3_0(
+(
1,
n5_0)),
gen_g3_0(
b)) →
*4_0, rt ∈ Ω(n5
0)
Induction Base:
f(gen_g3_0(+(1, 0)), gen_g3_0(b))
Induction Step:
f(gen_g3_0(+(1, +(n5_0, 1))), gen_g3_0(b)) →RΩ(1)
f(gen_g3_0(+(1, n5_0)), gen_g3_0(b)) →IH
*4_0
We have rt ∈ Ω(n1) and sz ∈ O(n). Thus, we have ircR ∈ Ω(n).
(8) Complex Obligation (BEST)
(9) Obligation:
TRS:
Rules:
f(
x,
x) →
af(
g(
x),
y) →
f(
x,
y)
Types:
f :: g → g → a
a :: a
g :: g → g
hole_a1_0 :: a
hole_g2_0 :: g
gen_g3_0 :: Nat → g
Lemmas:
f(gen_g3_0(+(1, n5_0)), gen_g3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_g3_0(0) ⇔ hole_g2_0
gen_g3_0(+(x, 1)) ⇔ g(gen_g3_0(x))
No more defined symbols left to analyse.
(10) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g3_0(+(1, n5_0)), gen_g3_0(b)) → *4_0, rt ∈ Ω(n50)
(11) BOUNDS(n^1, INF)
(12) Obligation:
TRS:
Rules:
f(
x,
x) →
af(
g(
x),
y) →
f(
x,
y)
Types:
f :: g → g → a
a :: a
g :: g → g
hole_a1_0 :: a
hole_g2_0 :: g
gen_g3_0 :: Nat → g
Lemmas:
f(gen_g3_0(+(1, n5_0)), gen_g3_0(b)) → *4_0, rt ∈ Ω(n50)
Generator Equations:
gen_g3_0(0) ⇔ hole_g2_0
gen_g3_0(+(x, 1)) ⇔ g(gen_g3_0(x))
No more defined symbols left to analyse.
(13) LowerBoundsProof (EQUIVALENT transformation)
The lowerbound Ω(n1) was proven with the following lemma:
f(gen_g3_0(+(1, n5_0)), gen_g3_0(b)) → *4_0, rt ∈ Ω(n50)
(14) BOUNDS(n^1, INF)