*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(.(.(x,y),z)) -> f(.(x,.(y,z)))
f(.(nil(),y)) -> .(nil(),f(y))
f(nil()) -> nil()
g(.(x,.(y,z))) -> g(.(.(x,y),z))
g(.(x,nil())) -> .(g(x),nil())
g(nil()) -> nil()
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/1,g/1} / {./2,nil/0}
Obligation:
Full
basic terms: {f,g}/{.,nil}
Applied Processor:
ToInnermost
Proof:
switch to innermost, as the system is overlay and right linear and does not contain weak rules
*** 1.1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
f(.(.(x,y),z)) -> f(.(x,.(y,z)))
f(.(nil(),y)) -> .(nil(),f(y))
f(nil()) -> nil()
g(.(x,.(y,z))) -> g(.(.(x,y),z))
g(.(x,nil())) -> .(g(x),nil())
g(nil()) -> nil()
Weak DP Rules:
Weak TRS Rules:
Signature:
{f/1,g/1} / {./2,nil/0}
Obligation:
Innermost
basic terms: {f,g}/{.,nil}
Applied Processor:
Bounds {initialAutomaton = minimal, enrichment = match}
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with follwoing automaton.
._0(2,2) -> 2
._1(2,2) -> 4
._1(2,3) -> 3
._1(2,4) -> 3
._1(4,2) -> 7
._1(5,6) -> 1
._1(5,6) -> 5
._1(6,6) -> 6
._1(7,2) -> 7
f_0(2) -> 1
f_1(2) -> 6
f_1(3) -> 1
f_1(3) -> 6
f_1(4) -> 6
g_0(2) -> 1
g_1(2) -> 5
g_1(4) -> 5
g_1(7) -> 1
g_1(7) -> 5
nil_0() -> 2
nil_1() -> 1
nil_1() -> 5
nil_1() -> 6
*** 1.1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
f(.(.(x,y),z)) -> f(.(x,.(y,z)))
f(.(nil(),y)) -> .(nil(),f(y))
f(nil()) -> nil()
g(.(x,.(y,z))) -> g(.(.(x,y),z))
g(.(x,nil())) -> .(g(x),nil())
g(nil()) -> nil()
Signature:
{f/1,g/1} / {./2,nil/0}
Obligation:
Innermost
basic terms: {f,g}/{.,nil}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).