*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(.(.(x,y),z)) -> f(.(x,.(y,z))) f(.(nil(),y)) -> .(nil(),f(y)) f(nil()) -> nil() g(.(x,.(y,z))) -> g(.(.(x,y),z)) g(.(x,nil())) -> .(g(x),nil()) g(nil()) -> nil() Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/1} / {./2,nil/0} Obligation: Full basic terms: {f,g}/{.,nil} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: f(.(.(x,y),z)) -> f(.(x,.(y,z))) f(.(nil(),y)) -> .(nil(),f(y)) f(nil()) -> nil() g(.(x,.(y,z))) -> g(.(.(x,y),z)) g(.(x,nil())) -> .(g(x),nil()) g(nil()) -> nil() Weak DP Rules: Weak TRS Rules: Signature: {f/1,g/1} / {./2,nil/0} Obligation: Innermost basic terms: {f,g}/{.,nil} Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} Proof: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. ._0(2,2) -> 2 ._1(2,2) -> 4 ._1(2,3) -> 3 ._1(2,4) -> 3 ._1(4,2) -> 7 ._1(5,6) -> 1 ._1(5,6) -> 5 ._1(6,6) -> 6 ._1(7,2) -> 7 f_0(2) -> 1 f_1(2) -> 6 f_1(3) -> 1 f_1(3) -> 6 f_1(4) -> 6 g_0(2) -> 1 g_1(2) -> 5 g_1(4) -> 5 g_1(7) -> 1 g_1(7) -> 5 nil_0() -> 2 nil_1() -> 1 nil_1() -> 5 nil_1() -> 6 *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: f(.(.(x,y),z)) -> f(.(x,.(y,z))) f(.(nil(),y)) -> .(nil(),f(y)) f(nil()) -> nil() g(.(x,.(y,z))) -> g(.(.(x,y),z)) g(.(x,nil())) -> .(g(x),nil()) g(nil()) -> nil() Signature: {f/1,g/1} / {./2,nil/0} Obligation: Innermost basic terms: {f,g}/{.,nil} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).