*** 1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: merge(x,nil()) -> x merge(++(x,y),++(u(),v())) -> ++(x,merge(y,++(u(),v()))) merge(++(x,y),++(u(),v())) -> ++(u(),merge(++(x,y),v())) merge(nil(),y) -> y Weak DP Rules: Weak TRS Rules: Signature: {merge/2} / {++/2,nil/0,u/0,v/0} Obligation: Full basic terms: {merge}/{++,nil,u,v} Applied Processor: ToInnermost Proof: switch to innermost, as the system is overlay and right linear and does not contain weak rules *** 1.1 Progress [(O(1),O(n^1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: merge(x,nil()) -> x merge(++(x,y),++(u(),v())) -> ++(x,merge(y,++(u(),v()))) merge(++(x,y),++(u(),v())) -> ++(u(),merge(++(x,y),v())) merge(nil(),y) -> y Weak DP Rules: Weak TRS Rules: Signature: {merge/2} / {++/2,nil/0,u/0,v/0} Obligation: Innermost basic terms: {merge}/{++,nil,u,v} Applied Processor: Bounds {initialAutomaton = minimal, enrichment = match} Proof: The problem is match-bounded by 1. The enriched problem is compatible with follwoing automaton. ++_0(2,2) -> 1 ++_0(2,2) -> 2 ++_1(2,2) -> 8 ++_1(2,3) -> 1 ++_1(2,3) -> 3 ++_1(5,6) -> 3 ++_1(5,6) -> 4 ++_1(5,7) -> 1 ++_1(5,7) -> 3 merge_0(2,2) -> 1 merge_1(2,4) -> 3 merge_1(8,6) -> 7 nil_0() -> 1 nil_0() -> 2 u_0() -> 1 u_0() -> 2 u_1() -> 5 v_0() -> 1 v_0() -> 2 v_1() -> 6 2 -> 1 4 -> 3 *** 1.1.1 Progress [(O(1),O(1))] *** Considered Problem: Strict DP Rules: Strict TRS Rules: Weak DP Rules: Weak TRS Rules: merge(x,nil()) -> x merge(++(x,y),++(u(),v())) -> ++(x,merge(y,++(u(),v()))) merge(++(x,y),++(u(),v())) -> ++(u(),merge(++(x,y),v())) merge(nil(),y) -> y Signature: {merge/2} / {++/2,nil/0,u/0,v/0} Obligation: Innermost basic terms: {merge}/{++,nil,u,v} Applied Processor: EmptyProcessor Proof: The problem is already closed. The intended complexity is O(1).