*** 1 Progress [(O(1),O(n^1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
++(x,++(y,z)) -> ++(++(x,y),z)
++(x,nil()) -> x
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
make(x) -> .(x,nil())
rev(++(x,y)) -> ++(rev(y),rev(x))
rev(nil()) -> nil()
rev(rev(x)) -> x
Weak DP Rules:
Weak TRS Rules:
Signature:
{++/2,make/1,rev/1} / {./2,nil/0}
Obligation:
Full
basic terms: {++,make,rev}/{.,nil}
Applied Processor:
Bounds {initialAutomaton = perSymbol, enrichment = match}
Proof:
The problem is match-bounded by 1.
The enriched problem is compatible with follwoing automaton.
++_0(2,2) -> 1
++_0(2,4) -> 1
++_0(4,2) -> 1
++_0(4,4) -> 1
++_1(2,2) -> 6
++_1(2,4) -> 6
++_1(4,2) -> 6
++_1(4,4) -> 6
._0(2,2) -> 1
._0(2,2) -> 2
._0(2,2) -> 6
._0(2,4) -> 1
._0(2,4) -> 2
._0(2,4) -> 6
._0(4,2) -> 1
._0(4,2) -> 2
._0(4,2) -> 6
._0(4,4) -> 1
._0(4,4) -> 2
._0(4,4) -> 6
._1(2,6) -> 1
._1(2,6) -> 6
._1(2,7) -> 3
._1(4,6) -> 1
._1(4,6) -> 6
._1(4,7) -> 3
make_0(2) -> 3
make_0(4) -> 3
nil_0() -> 1
nil_0() -> 4
nil_0() -> 6
nil_1() -> 5
nil_1() -> 7
rev_0(2) -> 5
rev_0(4) -> 5
2 -> 1
2 -> 6
4 -> 1
4 -> 6
*** 1.1 Progress [(O(1),O(1))] ***
Considered Problem:
Strict DP Rules:
Strict TRS Rules:
Weak DP Rules:
Weak TRS Rules:
++(x,++(y,z)) -> ++(++(x,y),z)
++(x,nil()) -> x
++(.(x,y),z) -> .(x,++(y,z))
++(nil(),y) -> y
make(x) -> .(x,nil())
rev(++(x,y)) -> ++(rev(y),rev(x))
rev(nil()) -> nil()
rev(rev(x)) -> x
Signature:
{++/2,make/1,rev/1} / {./2,nil/0}
Obligation:
Full
basic terms: {++,make,rev}/{.,nil}
Applied Processor:
EmptyProcessor
Proof:
The problem is already closed. The intended complexity is O(1).